4,796 research outputs found
Chaotic exploration and learning of locomotion behaviours
We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
Thermodynamic properties of extremely diluted symmetric Q-Ising neural networks
Using the replica-symmetric mean-field theory approach the thermodynamic and
retrieval properties of extremely diluted {\it symmetric} -Ising neural
networks are studied. In particular, capacity-gain parameter and
capacity-temperature phase diagrams are derived for and .
The zero-temperature results are compared with those obtained from a study of
the dynamics of the model. Furthermore, the de Almeida-Thouless line is
determined. Where appropriate, the difference with other -Ising
architectures is outlined.Comment: 16 pages Latex including 6 eps-figures. Corrections, also in most of
the figures have been mad
Decoherence window and electron-nuclear cross-relaxation in the molecular magnet V 15
Rabi oscillations in the V_15 Single Molecule Magnet (SMM) embedded in the
surfactant DODA have been studied at different microwave powers. An intense
damping peak is observed when the Rabi frequency Omega_R falls in the vicinity
of the Larmor frequency of protons w_N, while the damping time t_R of
oscillations reaches values 10 times shorter than the phase coherence time t_2
measured at the same temperature. The experiments are interpreted by the N-spin
model showing that t_R is directly associated with the decoherence via
electronic/nuclear spin cross-relaxation in the rotating reference frame. It is
shown that this decoherence is accompanied with energy dissipation in the range
of the Rabi frequencies w_N - sigma_e < Omega_R < w_N, where sigma_e is the
mean super-hyperfine field (in frequency units) induced by protons at SMMs.
Weaker damping without dissipation takes place outside this dissipation window.
Simple local field estimations suggest that this rapid cross-relaxation in
resonant microwave field observed for the first time in SMMV_15 should take
place in other SMMs like Fe_8 and Mn_12 containing protons, too
Superconductivity Near Ferromagnetism in MgCNi3
An unusual quasi-two-dimensional heavy band mass van Hove singularity (vHs)
lies very near the Fermi energy in MgCNi3, recently reported to superconduct at
8.5 K. This compound is strongly exchange enhanced and is unstable to
ferromagnetism upon hole doping with 12% Mg --> Na or Li. The 1/4-depleted fcc
(frustrated) Ni sublattice and lack of Fermi surface nesting argues against
competing antiferromagnetic and charge density wave instabilities. We identify
an essentially infinite mass along the M-Gamma line, leading to
quasi-two-dimensionality of this vHs may promote unconventional p-wave pairing
that could coexist with superconductivity.Comment: 4 two-column pages, 4 figure
Experimental and theoretical investigation of phosphorus in-situ doping of germanium epitaxial layers
Cataloged from PDF version of article.We investigate phosphorus in-situ doping characteristics in germanium (Ge) during epitaxial growth by spreading resistance profiling analysis. In addition, we present an accurate model for the kinetics of the diffusion in the in-situ process, modeling combined growth and diffusion events. The activation energy and pre-exponential factor for phosphorus (P) diffusion are determined to be 1.91 eV and 3.75 x 10(-5) cm(2)/s. These results show that P in-situ doping diffusivity is low enough to form shallow junctions for high performance Ge devices. (C) 2013 Elsevier B.V. All rights reserve
Spin-Orbit Interactions in Bilayer Exciton-Condensate Ferromagnets
Bilayer electron-hole systems with unequal electron and hole densities are
expected to have exciton condensate ground states with spontaneous
spin-polarization in both conduction and valence bands. In the absence of
spin-orbit and electron-hole exchange interactions there is no coupling between
the spin-orientations in the two quantum wells. In this article we show that
Rashba spin-orbit interactions lead to unconventional magnetic anisotropies,
whose strength we estimate, and to ordered states with unusual quasiparticle
spectra.Comment: 36 pages, 12 figure
Non-Drude Optical Conductivity of (III,Mn)V Ferromagnetic Semiconductors
We present a numerical model study of the zero-temperature infrared optical
properties of (III,Mn)V diluted magnetic semiconductors. Our calculations
demonstrate the importance of treating disorder and interaction effects
simultaneously in modelling these materials. We find that the conductivity has
no clear Drude peak, that it has a broadened inter-band peak near 220 meV, and
that oscillator weight is shifted to higher frequencies by stronger disorder.
These results are in good qualitative agreement with recent thin film
absorption measurements. We use our numerical findings to discuss the use of
f-sum rules evaluated by integrating optical absorption data for accurate
carrier-density estimates.Comment: 7 pages, 3 figure
Recommended from our members
AMP-activated protein kinase-α1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals
Although previous studies have proposed plausible mechanisms of the activation of transforming growth factor-β-activated kinase 1 (TAK1) in inflammatory signals, including Toll-like receptors (TLRs), its activating kinase still remains to be unclear. In the present study, we have provided evidences that AMP-activated protein kinase (AMPK)-α1 has a pivotal role for activating TAK1, and thereby regulate NF-κB-dependent gene expressions in inflammatory signaling mediated by TLR4 and TNF-α stimulation. AMPK-α1 specifically interacts with TAK1 and reciprocally regulates their kinase activities. Upon the stimulation of lipopolysaccharide, AMPK-α1-knockdown (AMPK-) or TAK1-knockdown human monocytic THP-1 cells exhibit a dramatic reduction in the TAK1 or AMPK-α1 kinase activity, respectively, and subsequent suppressions of its downstream signaling cascades, which further leads to inhibitions of NF-κB and thereby productions of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Importantly, the microarray analysis of AMPK- cells revealed a dramatic reduction in the NF-κB-dependent genes induced by TLR4 and TNF-α stimulation, and the observation was in significant correlation with the results of quantitative real-time PCR. Moreover, AMPK- cells are highly sensitive to the TNF-α-induced apoptosis, which is accompanied with dramatic reductions in the NF-κB-dependent and anti-apoptotic genes. As a result, our data demonstrate that AMPK-α1 as an activating kinase of TAK1 has a key role in mediating inflammatory signals triggered by TLR4 and TNF-α
- …