27 research outputs found

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Neurodevelopment of children exposed in utero to treatment of maternal malignancy

    Get PDF
    Cancer is the second most common cause of death during the reproductive years, complicating approximately 1/1000 pregnancies. The occurrence of cancer during gestation is likely to increase as a result of a woman's tendency to delay childbearing. Improved diagnostic techniques for malignancies increases detection of cancer during pregnancy. Malignant conditions during gestation are believed to be associated with an increase in poor perinatal and fetal outcomes that are often due to maternal treatment. Physicians should weigh the benefits of treatment against the risks of fetal exposure. To date, most reports have focused on morphologic observations made very close to the time of delivery with little data collected on children's long-term neurodevelopment following in utero exposure to malignancy and treatment. Because the brain differentiates throughout pregnancy and in early postnatal life, damage may occur even after first trimester exposure. The possible delayed effects of treatment on a child's neurological, intellectual and behavioural functioning have never been systematically evaluated. The goal of this report was to summarize all related issues into one review to facilitate both practitioners' and patients' access to known data on fetal risks and safety. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Multicentre evaluation of MRI variability in the quantification of infarct size in experimental focal cerebral ischaemia

    Get PDF
    Ischaemic stroke is a leading cause of death and disability in the developed world. Despite that considerable advances in experimental research enabled understanding of the pathophysiology of the disease and identified hundreds of potential neuroprotective drugs for treatment, no such drug has shown efficacy in humans. The failure in the translation from bench to bedside has been partially attributed to the poor quality and rigour of animal studies. Recently, it has been suggested that multicentre animal studies imitating the design of randomised clinical trials could improve the translation of experimental research. Magnetic resonance imaging (MRI) could be pivotal in such studies due to its non-invasive nature and its high sensitivity to ischaemic lesions, but its accuracy and concordance across centres has not yet been evaluated. This thesis focussed on the use of MRI for the assessment of late infarct size, the primary outcome used in stroke models. Initially, a systematic review revealed that a plethora of imaging protocols and data analysis methods are used for this purpose. Using meta-analysis techniques, it was determined that T2-weighted imaging (T2WI) was best correlated with gold standard histology for the measurement of infarctbased treatment effects. Then, geometric accuracy in six different preclinical MRI scanners was assessed using structural phantoms and automated data analysis tools developed in-house. It was found that geometric accuracy varies between scanners, particularly when centre-specific T2WI protocols are used instead of a standardised protocol, though longitudinal stability over six months is high. Finally, a simulation study suggested that the measured geometric errors and the different protocols are sufficient to render infarct volumes and related group comparisons across centres incomparable. The variability increases when both factors are taken into account and when infarct volume is expressed as a relative estimate. Data in this study were analysed using a custom-made semi-automated tool that was faster and more reliable in repeated analyses than manual analysis. Findings of this thesis support the implementation of standardised methods for the assessment and optimisation of geometric accuracy in MRI scanners, as well as image acquisition and analysis of in vivo data for the measurement of infarct size in multicentre animal studies. Tools and techniques developed as part of the thesis show great promise in the analysis of phantom and in vivo data and could be a step towards this endeavour

    A Comparison of Iron Oxide Particles and Silica Particles for Tracking Organ Recellularization

    No full text
    Reseeding of decellularized organ scaffolds with a patient's own cells has promise for eliminating graft versus host disease. This study investigated whether ultrasound imaging or magnetic resonance imaging (MRI) can track the reseeding of murine liver scaffolds with silica-labeled or iron-labeled liver hepatocytes. Mesoporous silica particles were created using the Stober method, loaded with Alexa Flour 647 fluorophore, and conjugated with protamine sulfate, glutamine, and glycine. Fluorescent iron oxide particles were obtained from a commercial source. Liver cells from donor mice were loaded with the silica particles or iron oxide particles. Donor livers were decellularized and reperfused with silica-labeled or iron-labeled cells. The reseeded livers were longitudinally analyzed with ultrasound imaging and MRI. Liver biopsies were imaged with confocal microscopy and scanning electron microscopy. Ultrasound imaging had a detection limit of 0.28 mg/mL, while MRI had a lower detection limit of 0.08 mg/mL based on particle weight. The silica-loaded cells proliferated at a slower rate compared to iron-loaded cells. Ultrasound imaging, MRI, and confocal microscopy underestimated cell numbers relative to scanning electron microscopy. Ultrasound imaging had the greatest underestimation due to coarse resolution compared to the other imaging modalities. Despite this underestimation, both ultrasound imaging and MRI successfully tracked the longitudinal recellularization of liver scaffolds.US Military AcademyOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Acces to highly fluorinated silica by direct F2 fluorination : chemical compositions and FTIR investigations

    No full text
    The direct F2 gas fluorination of a mesoporous silica gel has been shown to be a unique method leading to very high levels of fluorination (up to 13 wt % F in the bulk). The final powders are homogeneous with a controlled amount of grafted fluorine. In this study, various conditions of fluorination were tested, such as duration, temperature, F2 gas concentration of the fluorinating gas, or an annealing pretreatment. The content of grafted fluorine on silica was quantified by XPS and by the Seel method. Infrared spectroscopy measurements accounted for the consumption of different types of hydroxyl groups, that is, isolated (3740 cm−1), terminal (3715 cm−1), and bound (3520 cm−1), and also for the presence of unreacted internal hydroxyl groups inaccessible to D2O molecules and so to F2. Results showed that an F/OH substitution occurs during the fluorination process and that the grafted amount depends on the F2 concentration of the fluorinating gas and on the concentration of surface hydroxyl groups and physisorbed water trapped on starting silica. Elemental analyses and FTIR data led to the bulk composition of fluorinated silicas: SiO2−x−y(OH)2xF2y. Finally, on a quantitative basis, the elimination of silanol groups parallels the grafting of fluorine for low fluorine content. At higher fluorine contents, a reaction path takes place involving the Si−O−Si opening. Redox processes involving O2/OH− and F2/F− couples explain the wide range of reached F/OH substitution rates without formation of SiF4 or SiF62− species which are observed in classical routes with aqueous fluorinating agents
    corecore