591 research outputs found

    Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data

    Get PDF
    The Eurasian badger ( Meles meles ) is a facultatively social carnivore that shows only rudimentary co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence and limited genetic data have suggested that more than one female may breed in a social group. We combine pregnancy detection by ultrasound and microsatellite locus scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to demonstrate that multiple females reproduce within a social group. We found that at least three of seven potential mothers reproduced in a group that contained 11 reproductive age females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger

    The Duration of the Effects of Repeated Widespread Badger Culling on Cattle Tuberculosis Following the Cessation of Culling

    Get PDF
    Background: In the British Isles, control of cattle tuberculosis (TB) is hindered by persistent infection of wild badger (Meles meles) populations. A large-scale field trial—the Randomised Badger Culling Trial (RBCT)—previously showed that widespread badger culling produced modest reductions in cattle TB incidence during culling, which were offset by elevated TB risks for cattle on adjoining lands. Once culling was halted, beneficial effects inside culling areas increased, while detrimental effects on adjoining lands disappeared. However, a full assessment of the utility of badger culling requires information on the duration of culling effects. Methodology/Principal Findings: We monitored cattle TB incidence in and around RBCT areas after culling ended. We found that benefits inside culled areas declined over time, and were no longer detectable by three years post-culling. On adjoining lands, a trend suggesting beneficial effects immediately after the end of culling was insignificant, and disappeared after 18 months post-culling. From completion of the first cull to the loss of detectable effects (an average five-year culling period plus 2.5 years post-culling), cattle TB incidence was 28.7% lower (95% confidence interval [CI] 20.7 to 35.8% lower) inside ten 100 km2 culled areas than inside ten matched no-culling areas, and comparable (11.7% higher, 95% CI: 13.0% lower to 43.4% higher, p = 0.39) on lands #2 km outside culled and no-culling areas. The financial costs of culling an idealized 150 km2 area would exceed the savings achieved through reduced cattle TB, by factors of 2 to 3.5. Conclusions/Significance: Our findings show that the reductions in cattle TB incidence achieved by repeated badger culling were not sustained in the long term after culling ended and did not offset the financial costs of culling. These results, combined with evaluation of alternative culling methods, suggest that badger culling is unlikely to contribute effectively to the control of cattle TB in Britain

    The Development Of A Modern Foraminiferal Data Set For Sea-Level Reconstructions, Wakatobi Marine National Park, Southeast Sulawesi, Indonesia

    Get PDF
    We collected modern foraminiferal samples to characterize the foraminiferal environments and investigate the role that temporal and spatial variability may play in controlling the nature and significance of foraminiferal assemblages of the mangroves of Kaledupa, Wakatobi Marine National Park, Southeast Sulawesi, Indonesia. The study of foraminiferal live and dead assemblages indicates that dead assemblages are least prone to vary in time and space, and furthermore, they accurately represent the subsurface assemblages that are the focus of paleoenvironmental reconstructions. Further analyses of the dead assemblages indicate a vertical zonation of foraminifera within the intertidal zone. Zone D-Ia is dominated by agglutinated foraminifera Arenoparrella mexicana, Miliammina fusca, M. obliqua and Trochammina inflata. Zone D-Ib has mixed agglutinated/calcareous assemblages with species such as T. inflata and Ammonia tepida. Zone D-II is dominated by numerous calcareous species including A. tepida, Discorbinella bertheloti, Elphidium advenum and Quinqueloculina spp. Zone D-Ia is found to be the most accurate sea-level indicator and its assemblages are omnipresent world-wide. Zones D-Ib and D-II are subject to both spatial and temporal variations which must be included in any sea-level reconstructions

    An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions

    Full text link
    A new empirical model of the electron fluxes and ion fluxes at geosynchronous orbit (GEO) is introduced, based on observations by Los Alamos National Laboratory (LANL) satellites. The model provides flux predictions in the energy range ~1 eV to ~40 keV, as a function of local time, energy, and the strength of the solar wind electric field (the negative product of the solar wind speed and the z component of the magnetic field). Given appropriate upstream solar wind measurements, the model provides a forecast of the fluxes at GEO with a ~1 h lead time. Model predictions are tested against in‐sample observations from LANL satellites and also against out‐of‐sample observations from the Compact Environmental Anomaly Sensor II detector on the AMC‐12 satellite. The model does not reproduce all structure seen in the observations. However, for the intervals studied here (quiet and storm times) the normalized root‐mean‐square deviation < ~0.3. It is intended that the model will improve forecasting of the spacecraft environment at GEO and also provide improved boundary/input conditions for physical models of the magnetosphere.Key PointsNew model of electron and ion fluxes at GEO (driven by ‐vBz) provides a ~1 h forecast of fluxes in the energy range ~1 eV to ~40 keVThe main benefit from the new model is the ability to predict the fluxes at GEO in advanceForecasts are a good match to observations during quiet times and storm timesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134149/1/swe20339_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134149/2/swe20339.pd

    Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)

    Get PDF
    Bovine TB is a major problem for the agricultural industry in several countries. TB can be contracted and spread by species other than cattle and this can cause a problem for disease control. In the UK and Ireland, badgers are a recognised reservoir of infection and there has been substantial discussion about potential control strategies. We present a coupling of individual based models of bovine TB in badgers and cattle, which aims to capture the key details of the natural history of the disease and of both species at approximately county scale. The model is spatially explicit it follows a very large number of cattle and badgers on a different grid size for each species and includes also winter housing. We show that the model can replicate the reported dynamics of both cattle and badger populations as well as the increasing prevalence of the disease in cattle. Parameter space used as input in simulations was swept out using Latin hypercube sampling and sensitivity analysis to model outputs was conducted using mixed effect models. By exploring a large and computationally intensive parameter space we show that of the available control strategies it is the frequency of TB testing and whether or not winter housing is practised that have the most significant effects on the number of infected cattle, with the effect of winter housing becoming stronger as farm size increases. Whether badgers were culled or not explained about 5%, while the accuracy of the test employed to detect infected cattle explained less than 3% of the variance in the number of infected cattle

    Local Cattle and Badger Populations Affect the Risk of Confirmed Tuberculosis in British Cattle Herds

    Get PDF
    Background: The control of bovine tuberculosis (bTB) remains a priority on the public health agenda in Great Britain, after launching in 1998 the Randomised Badger Culling Trial (RBCT) to evaluate the effectiveness of badger (Meles meles) culling as a control strategy. Our study complements previous analyses of the RBCT data (focusing on treatment effects) by presenting analyses of herd-level risks factors associated with the probability of a confirmed bTB breakdown in herds within each treatment: repeated widespread proactive culling, localized reactive culling and no culling (survey-only). Methodology/Principal Findings: New cases of bTB breakdowns were monitored inside the RBCT areas from the end of the first proactive badger cull to one year after the last proactive cull. The risk of a herd bTB breakdown was modeled using logistic regression and proportional hazard models adjusting for local farm-level risk factors. Inside survey-only and reactive areas, increased numbers of active badger setts and cattle herds within 1500 m of a farm were associated with an increased bTB risk. Inside proactive areas, the number of M. bovis positive badgers initially culled within 1500 m of a farm was the strongest predictor of the risk of a confirmed bTB breakdown. Conclusions/Significance: The use of herd-based models provide insights into how local cattle and badger populations affect the bTB breakdown risks of individual cattle herds in the absence of and in the presence of badger culling. These measures of local bTB risks could be integrated into a risk-based herd testing programme to improve the targeting o

    Stakeholder narratives on trypanosomiasis, their effect on policy and the scope for One Health

    Get PDF
    Background This paper explores the framings of trypanosomiasis, a widespread and potentially fatal zoonotic disease transmitted by tsetse flies (Glossina species) affecting both humans and livestock. This is a country case study focusing on the political economy of knowledge in Zambia. It is a pertinent time to examine this issue as human population growth and other factors have led to migration into tsetse-inhabited areas with little historical influence from livestock. Disease transmission in new human-wildlife interfaces such as these is a greater risk, and opinions on the best way to manage this are deeply divided. Methods A qualitative case study method was used to examine the narratives on trypanosomiasis in the Zambian policy context through a series of key informant interviews. Interviewees included key actors from international organisations, research organisations and local activists from a variety of perspectives acknowledging the need to explore the relationships between the human, animal and environmental sectors. Principal Findings Diverse framings are held by key actors looking from, variously, the perspectives of wildlife and environmental protection, agricultural development, poverty alleviation, and veterinary and public health. From these viewpoints, four narratives about trypanosomiasis policy were identified, focused around four different beliefs: that trypanosomiasis is protecting the environment, is causing poverty, is not a major problem, and finally, that it is a Zambian rather than international issue to contend with. Within these narratives there are also conflicting views on the best control methods to use and different reasoning behind the pathways of response. These are based on apparently incompatible priorities of people, land, animals, the economy and the environment. The extent to which a One Health approach has been embraced and the potential usefulness of this as a way of reconciling the aims of these framings and narratives is considered throughout the paper. Conclusions/Significance While there has historically been a lack of One Health working in this context, the complex, interacting factors that impact the disease show the need for cross-sector, interdisciplinary decision making to stop rival narratives leading to competing actions. Additional recommendations include implementing: surveillance to assess under-reporting of disease and consequential under-estimation of disease risk; evidence-based decision making; increased and structurally managed funding across countries; and focus on interactions between disease drivers, disease incidence at the community level, and poverty and equity impacts
    corecore