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The Development Of A Modern Foraminiferal Data Set For Sea-Level
Reconstructions, Wakatobi Marine National Park, Southeast Sulawesi,
Indonesia

Abstract
We collected modern foraminiferal samples to characterize the foraminiferal environments and investigate the
role that temporal and spatial variability may play in controlling the nature and significance of foraminiferal
assemblages of the mangroves of Kaledupa, Wakatobi Marine National Park, Southeast Sulawesi, Indonesia.
The study of foraminiferal live and dead assemblages indicates that dead assemblages are least prone to vary in
time and space, and furthermore, they accurately represent the subsurface assemblages that are the focus of
paleoenvironmental reconstructions.

Further analyses of the dead assemblages indicate a vertical zonation of foraminifera within the intertidal
zone. Zone D-Ia is dominated by agglutinated foraminifera Arenoparrella mexicana, Miliammina fusca, M.
obliqua and Trochammina inflata. Zone D-Ib has mixed agglutinated/calcareous assemblages with species such
as T. inflata and Ammonia tepida. Zone D-II is dominated by numerous calcareous species including A. tepida,
Discorbinella bertheloti, Elphidium advenum and Quinqueloculina spp. Zone D-Ia is found to be the most
accurate sea-level indicator and its assemblages are omnipresent world-wide. Zones D-Ib and D-II are subject
to both spatial and temporal variations which must be included in any sea-level reconstructions.
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ABSTRACT 

We collected modern foraminiferal samples to characterize the 

foraminiferal environments and investigate the role that temporal and spatial 

variability may play in controlling the nature and significance of foraminiferal 

assemblages of the mangroves of Kaledupa, Wakatobi Marine National Park, 

Southeast Sulawesi, Indonesia. The study of foraminiferal live and dead 

assemblages indicates that dead assemblages are least prone to vary in time and 

space, and furthermore, they accurately represent the subsurface assemblages 

that are the focus of paleoenvironmental reconstructions. 

Further analyses of the dead assemblages indicate a vertical zonation of 

foraminifera within the intertidal zone. Zone D-Ia is dominated by agglutinated 

foraminifera Arenoparrella mexicana, Miliammina fusca, M. obliqua and 

Trochammina inflata. Zone D-Ib has mixed agglutinated/calcareous assemblages 

with species such as T. inflata and Ammonia tepida. Zone D-II is dominated by 

numerous calcareous species including A. tepida, Discorbinella bertheloti, 

Elphidium advenum and Quinqueloculina spp. Zone D-Ia is found to be the most 

accurate sea-level indicator and its assemblages are omnipresent world-wide. 

Zones D-Ib and D-II are subject to both spatial and temporal variations which must 

be included in any sea-level reconstructions. 
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INTRODUCTION 

The recent transition of the earth climate system from a glacial to interglacial 

state produced a dramatic global sea-level response. Regions distant from the major 

glaciation centers, known as far-field sites, are typically characterized by relative sea-

level (RSL) rise of ~120 m since the last glacial maximum (LGM) due, largely, to the 

influx of glacial meltwater to the oceans. In contrast, RSL dropped by many hundreds of 

meters in regions once covered by the major ice sheets (near- and intermediate-field 

sites) as a consequence of the isostatic ‘rebound' of the solid Earth (Lambeck and 

others, 2002; Peltier and others, 2002; Shennan and others, 2002). Field observations of 

RSLs from far field locations provide essential constraints to geophysical models 

because model predictions depend upon three mechanisms: ocean siphoning caused 

mainly by gravitational effects due to the collapse of peripheral forebulges (Mitrovica and 

Peltier 1991); continental levering associated with local ocean loading; and global ice 

melt since the LGM (magnitude and source).  

Although much contemporary research to test such theoretically derived models 

has focused on data sets from near- and intermediate-field sites (e.g., Shennan and 

others, 2000; Shennan and Horton, 2002), it is widely recognized that far-field sites 

provide the best possible estimate of the ‘eustatic function’ (Clark and others, 1978; 

Fleming and others, 1998; Yokoyama and others, 2001; Peltier, 2002). Consequently, 

model-derived reconstructions are increasingly recognizing the importance of these 

areas to constrain and test their geophysical earth models. With notable exceptions 

(Fairbanks, 1989, 1990; Bard and others, 1996; Chappell and others, 1998; Nunn and 

Peltier, 2001; Yokoyama and others, 2001), few studies have examined the sea-level 

histories from tectonically stable far-field areas. Furthermore, much of the data is derived 

from cored corals, which ‘are not the clear indicators of past sea-levels that they are 
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sometimes suggested to be’ (Hopley, 1986). Problems encountered focus on the large 

elevational range exhibited by some coral species and the delayed response of a reef 

system to the sea-level change. Consequently, this study of Wakatobi Marine National 

Park, Southeast Sulawesi, Indonesia, which is a tectonically stable far-field site, begins 

to address the need to acquire accurate sea-level indicators (e.g., foraminifera) in 

locations away from major plate boundaries.  

Many researchers have used foraminiferal distributions across the intertidal zone 

of temperate saltmarshes as sea-level indicators (e.g., Scott and Medioli, 1978, 1980a; 

Patterson, 1990; Gehrels, 1994; de Rijk, 1995; Horton, 1999; Horton and others, 1999a 

b; Gehrels and others, 2001). The intertidal distributions can be divided into two parts: 

an agglutinated assemblage that is restricted to the vegetated marsh; and a calcareous 

assemblage that dominates the mudflats and sandflats of the intertidal zone. The 

agglutinated assemblage is commonly employed as a sea-level indicator in the 

reconstruction of former sea levels. Saltmarsh foraminiferal zonation is a significantly 

more accurate indicator of sea level than undifferentiated marsh deposits since well-

defined zones subdividing the marsh increase the vertical resolution of the deposits 

(Scott and Medioli, 1978). Furthermore, Scott and others (2001) state that vertical 

zonations are observed in marshes throughout the world, and suggest that marsh 

foraminifera are ubiquitous worldwide. However, studies of microfossils and their 

relationship to RSL in coastal and estuarine environments from tropical or subtropical 

environments to support this conclusion are sparse, indeed, non-existent for Indonesia. 

Thus, this paper seeks to document, for the first time, some characteristics of modern 

foraminiferal environments in the central Wakatobi Marine National Park province for use 

in paleoenvironmental interpretations made from Quaternary sediments of Indonesia.  

This paper also discusses which assemblage constituents (live, dead and/or 

total) are best applied for foraminiferal-based sea-level reconstructions studies in tropical 
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locations and investigates the role that temporal and spatial variability may play in 

controlling the nature and significance of foraminiferal assemblages. Many researchers 

state that total assemblages most accurately represent general environmental conditions 

because they integrate seasonal and temporal fluctuations (e.g., Scott and others, 

2001). However, Murray (1991, 2000) suggests that the use of total assemblages 

disregards changes that will affect live assemblages after their death. Furthermore, 

depositional changes are sample dependent because the greater the vertical depth of a 

sample, the more important the dead contribution. Horton (1999) indicates that the dead 

assemblages from temperate marshes are the most appropriate for paleoenvironmental 

studies because these assemblages are less susceptible to seasonal variations and 

closely resemble subsurface assemblages. Horton (1999) and Horton and Edwards 

(2003) concluded that if the live assemblages are variable and not transferred into 

subsurface environments, their combination with the dead assemblage to produce a total 

assemblage simply degrades the utility of the latter. Thus, in this paper we have only 

investigated the live and dead assemblages. 

STUDY AREA 

Extending over 13,900 km2, the Wakatobi Marine National Park includes all coral 

reefs, islands, and communities within its boundaries and is centered around the main 

islands in the Wakatobi archipelago (Fig. 1). The area is considered ‘a geological and 

biological anomaly’ (Daws and Fujita, 1999) and is located at a zone of transition 

between the two distinct faunas associated with the Asian and Australian continents. 

Wallace (1869) postulated that the islands of Sulawesi had been isolated far longer than 

the surrounding islands, giving evolution a much greater opportunity to shape a unique 

fauna.  
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The field site is located on a tidal mangrove creek system on the northern coast 

of the island of Kaledupa (Fig. 1B). At the mouth of the creek, and along much of the 

coast of Kaledupa, is a 150 m-wide fringing mangrove swamp, with vegetation up to 7 m 

in height. The mangroves of Kaledupa exhibit a pronounced zonation of species similar 

to many other mangrove swamps (e.g., Chapman, 1944, Macnae, 1968; Snedaker, 

1982) with a fringing Rhizophora zone, transgressing into a mixed 

Rhizophora/Sonneratia zone and then an Avicennia mangrove zone (Barnes, written 

communication, 2002). The landward edge of the mangrove environment terminates on 

an exposed coral terrace. Tides in the area are semi-diurnal and microtidal, with mean 

spring tidal ranges of 1.6 m. On the flood tide, water enters the mangroves and saltflats 

via a network of small channels.  

METHODOLOGY 

Samples of surface sediment were collected from 20 stations along two 160 m 

transects (A and B). Both transects cross the intertidal zone from an exposed former 

coral terrace through a mangrove swamp and onto an unvegetated intertidal mudflat. All 

stations were leveled to sea level using a level and staff at regular spatial and temporal 

intervals throughout the study, and the tidal curve from Boeton Island was used to 

calculate elevations with respect to Indonesian Height Datum (IHD). At each station, one 

sample of approximately 10 cm3 volume (10 cm2 surface sample by 1 cm thick) was 

taken for foraminiferal analysis.  

To investigate the role that temporal and spatial variability may play in controlling 

the nature and significance of foraminiferal assemblages, samples were taken twice 

during a two-month period (Transects A1 and A2) and once from an additional adjacent 

transect (Transect B). Foraminiferal sample preparation followed Scott and others 

(2001). The species were identified with reference to a number of publications, namely 
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Collins (1958), Albani (1968), Albani and Yassini (1993), Brönnimann and Whittaker 

(1993), Yassini and Jones (1995), Hayward and others (1999a) and Revets (2000), and 

by study of reference collections in the Natural History Museum, London (Plate 1). 

Samples were stored in buffered ethanol with protein stain Rose Bengal to identify 

organisms living at the time of collection, and thus allow the analyses of live and dead 

assemblages (Walton, 1952; Scott and Medioli, 1980b; Murray, 1991; Murray and 

Bowser, 2000).  

We used two multivariate methods to detect, describe and classify patterns within 

the live and dead foraminiferal data set: unconstrained cluster analysis and detrended 

correspondence analysis (DCA). Unconstrained cluster analysis based on the 

unweighted Euclidean distance, using no transformation or standardization of the 

percentage data, was used to classify modern samples into more-or-less homogeneous 

faunal zones (clusters). Detrended correspondence analysis, an ordination technique, 

was used to represent samples as points in a multidimensional space. Similar samples 

are located together and dissimilar samples apart. Thus, cluster analysis is effective in 

classifying the samples according to their foraminiferal assemblage but, DCA gives 

further information about the pattern of variation within and between groups. This is 

important, as the precise boundaries between clusters can be arbitrary. Thus, we 

selected reliable faunal zones when the samples within each cluster were mutually 

exclusive in ordination space. The elevation of each station within the reliable clusters 

determined the vertical zonation of each intertidal environment.  

We employed Student's T-Test to determine whether two samples from A1 and 

A2, and A1 and B are likely to have come from the same two underlying populations. We 

use a two-tailed distribution. 
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RESULTS  

Forty species of foraminifera were identified from the study of surface samples 

from the mangroves of Kaledupa. The maximum number of species per 10 cm3 sample 

was 23, with maximum and minimum foraminiferal total (live plus dead) abundance of 

632 and 134 individuals per sample, respectively. The live and dead assemblages are 

dominated by three agglutinated species, Arenoparrella mexicana, Miliammina fusca, 

and Trochammina inflata, and four calcareous species, Ammonia tepida, Discorbinella 

bertheloti, Elphidium advenum and Quinqueloculina spp.  

 

LIVE ASSEMBLAGES 

The live assemblage of Transect A1 is dominated by calcareous species, which 

represent over 75% of the total count. Calcareous taxa such as A. tepida, E. advenum, 

D. bertheloti, and Q. spp. dominate the unvegetated mudflat and fringing Rhizophora 

mangrove section of the transect (0 - 60 m along the transect). Maximum percentages of 

E. advenum (15%), A. tepida (30%) and D. bertheloti (13%) occur 0 m, 18 m and 40 m 

along the transect, respectively (Fig. 2). In addition, the Rhizophora floral zone has a 

relatively high foraminiferal abundance, with an average count of 253 live specimens per 

10 cm3. The Rhizophora/Sonneratia floral zone (60 - 90 m along the transect) is also 

dominated by calcareous species with the maximum percentage of Haynesina 

depressula occurring within this zone (12%). However, there is an increasing agglutinate 

presence, in particular T. inflata, which reaches 22% 90 m along the transect. The 

majority of calcareous species are replaced by agglutinated species within the Avicennia 

mangrove zone (90 - 160 m along the transect). However, maximum percentages of Q. 

spp. (71%) occur 120 m along the transect. The maximum percentage of the dominant 
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agglutinated taxa T.inflata, M. fusca, and A. mexicana occur within this Avicennia zone 

(24%, 41% and 16%, respectively). 

The total number of live foraminifera from the twenty stations of the Transect A1 

is 3648 compared to 4102 specimens for the temporal Transect A2 (taken 2 months 

later). There are also differences in the dominant live foraminiferal species (Fig. 3). The 

relative contribution of Q. spp. between 5 and 32m along the transect is greater than 

30% at each sampling station of Transect A1 compared to less than 19% for Transect 

A2. Furthermore, 90 m along the transect the relative contributions of Q. spp. are 44% 

on A1 to 15% on A2, whereas 105 m along the transect A1 is 8% and A2 is 30%. 

Indeed, T-tests suggest that the relative abundances of Q. spp. between transects A1 

and A2 are statistically significantly different and did not come from the same underlying 

population (Table 1). Other notable differences include lower percentages of T. inflata 

between 128 m and 150 m along the transect for A1 (<16%) compared to Transect A2 

(>26%), and appreciably lower percentages of A. mexicana at the landward edge of the 

transect (5% on A1 to 56% on A2).  

The total number of live foraminifera also increases from the original transect 

(A1) to spatial Transect B (4057 specimens) taken adjacent to A1. The difference in 

contribution of Q. spp. between transects is amplified 90 m along the transect (44% on 

A1 to 6% on B), whereas 105 m along the transect A1 is 8% and B is 44% (Fig. 4). Other 

notable dissimilarities include the increase in relative abundance of M. fusca 150 m 

along the transect (13% on A1 to 44% on B) and a corresponding decrease in A. 

mexicana (41% on A1 to 19% on B).  Statistical analyses (T-tests) support the inference 

that these three species show significantly different assemblages between transects A1 

and B (Table 1).  
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DEAD ASSEMBLAGES 

There is an increase in the relative abundance of agglutinated foraminifera in the 

dead assemblage, with agglutinated species contributing over 35% to the total dead 

assemblage of Transect A1. However, the unvegetated mudflat and fringing mangrove 

floral zones are dominated by calcareous foraminifera such as A. tepida, E. advenum, D. 

bertheloti, H. depressula and Q. spp., with the two most dominant species reaching their 

maximum abundance within this zone (A. tepida - 30% and Q. spp. 37%). The 

unvegetated mudflat and fringing mangrove have the highest foraminiferal counts within 

the intertidal zone with an average count of 216 dead species per 10 cm3 (Fig. 5). 

The Rhizophora/Sonneratia mangrove zone shows an increasing contribution of 

agglutinated species, most notably T. inflata. However, A. tepida contributes at least 

16% at each station and the zone still possesses the maximum abundances of 

numerous calcareous species, including A. takanabensis and H. depressula (28% and 

14%, respectively). Nevertheless, the tendency of the increasing contribution of 

agglutinated species continues within the Avicennia mangrove zone, which is dominated 

by agglutinated species such as T.inflata, M. fusca, M. obliqua and A. mexicana; 

agglutinated species make up at least 65% of the assemblage landwards of 105 m. 

The foraminiferal dead assemblage count is relatively stable among the original 

(A1), temporal (A2) (Fig. 6) and spatial (B) (Fig. 7) transects. The total number of dead 

foraminifera is also relatively constant; 3712 on A1, 3708 on A2 and 3955 specimens on 

B. Statistical analyses do not show any significant differences although there are 

noteworthy differences at individual stations (Table 1). For example, the relative 

contribution of A. mexicana fluctuates from 12% on A1 to 32% on A2, and 48% on A1 to 

12% on A2 at 120 m and 150 m along the transect, respectively.  
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DISCUSSION 

There is much debate about which foraminiferal assemblage constituents (live, 

dead and/or total) to use for sea-level reconstructions (Buzas, 1968; Scott and Medioli, 

1980b; Scott and Leckie, 1990; de Rijk, 1995; Murray, 2000; Scott and others, 2001). 

These studies have, however, concentrated on foraminiferal species from temperate 

intertidal areas. This new study assesses the applicability of live and dead assemblages 

from tropical environments. Analyses of the spatial and temporal variations of the 

dominant species show that the dead assemblages are less susceptible to temporal and 

spatial variations compared to live counterparts. We investigated this further by 

examining the differences in the vertical zonation of the live and dead assemblage. 

Figures 8 and 9 both show the combined foraminiferal data (original A1, temporal A2 

and spatial B transects) of the live and dead assemblages separated into three reliable 

zones by cluster analysis and DCA. The live assemblages do not show any vertical 

zonations due to the heterogeneity of living assemblages in space and time, in particular 

Zone L-Ib, which covers the full elevational range of the transects. Similar spatial and 

temporal variations have been documented by many studies (Buzas, 1968; Schafer, 

1968; Jones and Ross, 1979; Schafer and Mudie, 1980; Alve and Murray, 1999, 2001; 

Murray and Alve, 2000; Swallow, 2000; Buzas and others, 2002; Hippensteel and 

others, 2002; Horton and Edwards, 2003). Schafer and Mudie (1980) discovered an 

order of magnitude difference in average foraminiferal number between pairs of sites. 

Alve and Murray (2001) demonstrated significant temporal variability over a 27-month 

period with the number of species found at any single sampling event varying between 5 

and 22. Such temporal and spatial patterns of live assemblages reflect the impact of 

factors such as seasonality, predation, reproduction, mode, sources and distribution 
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pattern of food particles and species interactions (Buzas, 1968; Schafer, 1968; Scott and 

others, 2001).  

In contrast to the live assemblages, the dead assemblages present a more 

homogeneous spatial and temporal distribution as a probable consequence of post-

mortem lateral and vertical mixing of empty tests by biological and physical agents (Scott 

and others, 2001). The dead assemblages assimilate all temporal variation and spatial 

patchiness into an ‘average signal’ that tends to reduce the inter-sample variance. For 

example, the combined dead assemblages are classified into three reliable zones that 

show a strong vertical zonation (Fig. 9), which indicates that the distribution of dead 

foraminifera are a direct function of elevation, with the duration and frequency of 

intertidal exposure as the most important environmental factors.  

Agglutinated species A. mexicana, M. fusca, M. obliqua and T. inflata dominate 

Zone D-Ia, which is found at the landward edge of the mangrove study site with an 

elevational range of 2.02 - 1.02 m IHD (range 0.20 m). Similar faunal assemblages have 

been observed at the landward margins of both tropical mangroves and temperate 

saltmarshes. Brönnimann and others (1992) and Brönnimann and Whittaker (1993) 

found assemblages of A. mexicana in mangrove sediments of the Fiji and Malay 

archipelagos, respectively. Assemblages dominated by T. inflata have been identified by 

Haslett (2001) and Horton and others (2003) at the landward limit of mangrove 

distributory channels from the Great Barrier Reef coastline, Australia. Many studies have 

identified high abundances of M. fusca in the mangroves of Fiji, southwest Australia, 

Brazil, New Zealand, northern Australia and the Great Barrier Reef coastline 

(Brönnimann, and others, 1992; Bronnimann and Whittaker, 1993; Yassini and Jones, 

1995; Debenay and others, 1998, 2000; Hayward and others, 1999a, b; Wang and 

Chappell, 2001; Horton and others, 2003). Studies of temperate saltmarshes have 

commonly identified a high marsh zone dominated by T. inflata and a low marsh zone 
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dominated by M. fusca (Scott and Medioli, 1978, 1980a; Gehrels, 1994; Horton, 1999; 

Horton and others, 1999a; Spencer, 2000; Hippensteel and others, 2000; Horton and 

Edwards, 2003, 2004 in press).  

Faunal Zone D-Ib has a mixed agglutinated/calcareous assemblage composed of 

Ammonia species, with lower frequencies of T. inflata and M. obliqua. The zone ranges 

from 1.90 - 1.60 m IHD (range 0.30 m). Other tropical and temperate studies have 

observed mixed agglutinated/calcareous assemblage zones but with an increase in the 

relative abundance of the former (Scott and Medioli, 1978, 1980a; Gehrels, 1994; 

Yassini and Jones, 1995; Debenay and others, 1998, 2000; Hayward and others, 

1999a,b ; Wang and Chappell, 2001; Horton and Edwards, 2003; Horton and others, 

2003).  

Zone D-II is found at the seaward edge of the transects and is dominated by 

numerous calcareous species such as A. tepida, D. bertheloti, E. advenum and Q. spp., 

with a relatively large elevation range of 1.71 - 0.47 m IHD (range 1.24 m). Other 

calcareous faunal zones with relatively high abundances of A. tepida are common in 

many tropical or subtropical locations (Hayward and others, 1996; Debenay and others, 

2000; Wang and Chappell 2001; Horton and others, 2003), although there are many 

species that are site specific. For example, studies of tidal flat environments of the Great 

Barrier Reef coastline by McIntyre (1997) and Horton and others (2003) have identified a 

foraminiferal faunal zone dominated by cosmopolitan Ammonia species, in addition to 

Miliolinella spp., the endemic E. discoidale multiloculum and extinct Pararotalia venusta. 

The presence of P. venusta indicates some reworking of material within the intertidal 

zone of this study site. Analyses of temperate saltmarshes show differences from the 

Kaledupan transect. Studies of British saltmarshes display tidal flat assemblages 

dominated by Haynesina germanica and other Elphidium species (Horton, 1999; 



 14

Edwards and Horton, 2000; Murray and Alve, 2000; Gehrels and others, 2001; Horton 

and Edwards, 2003, 2004 in press).  

 

IMPLICATIONS FOR SEA-LEVEL STUDIES 

The understanding of former sea levels based on the identification and 

interpretation of foraminiferal assemblages requires that their indicative meaning is 

known, i.e., the vertical relationship of the local environment in which the assemblage 

accumulated to a reference tide level (van de Plassche, 1986; Shennan, 1986; Horton 

and others, 1999b; 2000). The indicative meaning is commonly expressed in terms of an 

indicative range and a reference tidal level, the former being a vertical range within 

which the assemblage can occur, and the latter a tidal level to which the assemblage is 

assigned, e.g., mean high high water (MHHW) (Fig. 10).  

Estimates of the indicative meaning of faunal zones from the mangroves of 

Kaledupa (Table 2) are developed from the premise that zones found vertically adjacent, 

without a hiatus, must have formed in environments that existed side by side in space 

(Walthers Law). Therefore, the transition from faunal Zone D-Ib to Zone D-II has an 

indicative range equal to the range of the transition from one zone to the other, not that 

of the individual zone. For example, the indicative range of Zone D-II is ± 0.62 m, 

whereas the range of Zone D-Ib directly above Zone D-II is only ± 0.06 m. The ranges 

cover the elevational limits of the boundary when observed during the 2 sampling 

months. 

Despite the conclusion that dead assemblages are less variant than live 

assemblages in most spatial and temporal fluctuations, it is important to identify any 

variations in the vertical zonation that must be included in any sea-level reconstruction to 

avoid errors in accuracy and precision (Horton and Edwards, 2003). Multivariate 
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analyses of each individual transect (A1, A2 and B) show that the elevational range of 

the Zone D-Ia remains virtually constant; however, spatial and temporal variations in the 

dead assemblages are observed for faunal zones D-Ib and D-II (Fig. 11). The elevation 

of the boundary between zones D-Ib and D-II fluctuates from 1.86 m IHD at A1 to 1.42 m 

IHD at B, suggesting that some of the variability in the live assemblages is being 

transmitted to the dead assemblages. 

In addition to spatial and temporal variations, it is also important for sea-level 

reconstructions to assess the influence of post-depositional processes on the 

assemblage constituents. Thus, subsurface dead assemblages, the focus of 

paleoenvironmental reconstructions, were collected from the mudflat, fringing 

Rhizophora, mixed Rhizophora/Sonneratia and Avicennia environments to determine 

which modern assemblage constituents are most appropriate for paleoenvironmental 

reconstruction. Subsurface samples were collected at a depth of 12 cm; 97% of live 

specimens occurred above this depth. Scatter plots (Fig. 12) show a clear positive linear 

correlation between the subsurface and surface dead assemblages (r2 = 0.90) from 

Transect A1. The dead assemblages fluctuate little between the subsurface and surface 

because calcareous species such as Q. spp. are relatively minor contributors to surface 

dead assemblages in mangrove environments. In contrast, the live assemblages (r2 = 

0.29) show little relationship to subsurface dead assemblages. The live assemblages of 

the surface samples incorporate live calcareous species, which can represent over 85% 

of the assemblage from mangrove floral zones. However, post-depositional changes 

result in calcareous species being removed and the subsurface assemblages become 

more dominated by agglutinated species. Calcareous tests can be rapidly destroyed 

after death through dissolution in acidic pore waters (Green and others, 1993). 
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CONCLUSIONS  

The study of foraminiferal dead assemblages of the mangroves of Kaledupa 

indicates that the assemblage accurately represents the subsurface assemblages which 

are the focus of paleoenvironmental reconstructions, and furthermore that they do not 

show  spatial and temporal fluctuations as much as the live assemblages. Statistical 

analyses of the dead assemblages support numerous studies from temperate or tropical 

regions that indicate a vertical zonation of foraminifera within the intertidal zone: 

Agglutinated foraminifera such as A. mexicana, T. inflata, and M. fusca dominate Zone 

D-Ia; Zone D-Ib contains a mixed agglutinated/calcareous assemblages with species 

such as T. inflata and A. tepida; and Zone D-II is dominated by numerous calcareous 

species. Zone D-Ia is found to be the most accurate sea-level indicator and its 

assemblages are omnipresent world-wide. Zone D-Ib and D-II are subject to both spatial 

and temporal variations, which must be incorporated into any sea-level reconstructions. 

 

A data repository of all foraminiferal (percentage and raw counts) and 

environmental data can be found on the following website: 

http://www.geography.dur.ac.uk/information/official_sites/bph.html 
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TABLES 

Table 1. T-Test to determine whether two samples (from A1 and A2, A1 and B) 

are likely to have come from the same two underlying populations and thus assess 

temporal and spatial influences. Values in bold exceed the p < 0.05 significance value 

(2.09) and indicate rejection of the null hypothesis that the A1 and A2, and A1 and B are 

equal. 

Table 2. Indicative range and reference tide level for faunal zones of the 

mangroves of Kaledupa. 
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Table 1  

 Temporal (A1 and A2)  Spatial (A1 and B) 

Species Live Dead Live Dead 

Quinqueloculina spp. 2.94 1.82 5.51 0.54 

Ammonia tepida 0.92 0.20 1.66 2.00 

Elphidium advenum 3.10 0.09 2.08 0.54 

Discorbinella bertheloti 0.84 1.15 1.19 0.79 

Trochammina inflata 0.82 0.64 0.39 0.62 

Miliammina fusca 1.02 0.28 2.38 0.55 

Arenoparrella mexicana 1.97 0.22 2.20 0.93 
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Table 2. 

 Indicative 

Range 

Reference Water Level Reference Water Level

(m IHD) 

Zone D-Ia ± 10 cm MHHW 1.92 m 

Zone D-I directly 

above Zone D-Ib 

± 4 cm MHHW – 6 cm 1.86 m 

Zone D-Ib ± 15 cm [MHHW +MLHW]/2 - 3 cm 1.75 cm 

Zone D-Ib directly 

above Zone D-II 

± 6 cm MLHW – 6 cm 1.66 cm 

Zone D-II ± 62 cm MHLW+ 15 cm 1.09 cm 
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FIGURES  

 

 

Figure 1 Location map of study area. (A) Kaledupa, Wakatobi Marine National Park, (B) 

Transects A and B on a tidal mangrove creek and (C) Sulawesi, Indonesia. 
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Figure 2 Live foraminiferal abundance (%) of seven foraminiferal species and foraminiferal 

populations of the mangroves of Kaledupa Transect A1. The elevation, tidal levels 

(mean high high water (MHHW), mean low high water (MLHW) and mean high 

low water (MHLW) and mean low low water (MLLW) and floral zonation are 

indicated. 
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Figure 3 Live foraminiferal abundance (%) of seven foraminiferal species and foraminiferal 

populations of the mangroves of Kaledupa Transect A2. The elevation, tidal levels (mean 

high high water (MHHW), mean low high water (MLHW) and mean high low water (MHLW) 

and mean low low water (MLLW) and floral zonation are indicated. 
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Figure 4 Live foraminiferal abundance (%) of seven foraminiferal species and foraminiferal 

populations of the mangroves of Kaledupa Transect B. The elevation, tidal levels 

(mean high high water (MHHW), mean low high water (MLHW) and mean high 

low water (MHLW) and mean low low water (MLLW) and floral zonation are 

indicated. 
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Figure 5 Dead foraminiferal abundance (%) of seven foraminiferal species and 

foraminiferal populations of the mangroves of Kaledupa Transect A1. The 

elevation, tidal levels (mean high high water (MHHW), mean low high water 

(MLHW) and mean high low water (MHLW) and mean low low water (MLLW) and 

floral zonation are indicated. 
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Figure 6 Dead foraminiferal abundance (%) of seven foraminiferal species and 

foraminiferal populations of the mangroves of Kaledupa Transect A2. The 

elevation, tidal levels (mean high high water (MHHW), mean low high water 

(MLHW) and mean high low water (MHLW) and mean low low water (MLLW) and 

floral zonation are indicated. 
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Figure 7 Dead foraminiferal abundance (%) of seven foraminiferal species and 

foraminiferal populations of the mangroves of Kaledupa Transect B. The 

elevation, tidal levels (mean high high water (MHHW), mean low high water 

(MLHW) and mean high low water (MHLW) and mean low low water (MLLW) and 

floral zonation are indicated. 
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Figure 8 (a) Unconstrained cluster analysis based on unweighted Euclidean distances 

showing the live foraminiferal assemblages versus order of samples on 

dendrogram, (b) detrended correspondence analysis and (c) vertical zonation of 

the mangroves of Kaledupa transects A1, A2 and B. Only samples with counts 

greater than 40 individuals and species which reach 2% of the total sum are 

included. 
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Figure 9 (a) Unconstrained cluster analysis based on unweighted Euclidean distances 

showing the dead foraminiferal assemblages versus order of samples on 

dendrogram, (b) detrended correspondence analysis and (c) vertical zonation of 

the mangroves of Kaledupa transects A1, A2 and B. Only samples with counts 

greater than 40 individuals and species which reach 2% of the total sum are 

included. 
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Figure 10 The indicative meaning of the mangroves of Kaledupa illustrating the indicative 

range (IR) and reference water level (RWL) for Zone D-II. Mean high high water 

(MHHW), mean low high water (MLHW) and mean high low water (MHLW) are 

shown. 

 

 

 

 

Figure 11 Vertical zonations of the Transects A1, A2 and B of the mangroves of Kaledupa 

determined by unconstrained cluster analysis based on unweighted Euclidean 

distance and detrended correspondence analysis of relative abundances of dead 

individuals. Only samples with counts greater than 40 individuals and species 

which reach 2% of the total sum are included. 
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Figure 12 Scatter plots and r2 showing the relationship between (a) live and (b) dead surface 

and subsurface foraminiferal assemblages (%) from the mangroves of Kaledupa. 

 

 

 

 

PLATE 1 

1. Miliammina fusca (Brady). a. side view, X136. b. oblique apertural view, X176. 

c. side view, X176. 2. Miliammina oblique (Heron-Allen and Earland). a. side view, X200. 

b. apertural view, X200. 3. Arenoparrella mexicana (Anderson). a. side view, X200. b. 

oblique apertural view,  X200. 4. Trochammina inflata (Montagu). a. side view, X176. b. 
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side view, X176. c. edge view,  X176. d. oblique apertural view, X176. 5. Discorbinella 

bertheloti (d’Orbigny). a. spiral view, X200. b. apertural view, X200. 6. Haynesina 

depressula (Walker and Jacob).  a. side view, X200. b. edge view, X200. 7. Elphidium 

advenum (Cushman). a. side view, X200. b. edge view, X200.  8. Ammonia tepida 

(Cushman). a. spiral view, X200. b. apertural view, X200. 9. Ammonia takanabensis 

(Ishizaki). a. spiral view, X200. b. apertural view, X200. 
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