190 research outputs found

    Secondary circulations in the bottom boundary layer over sedimentary furrows

    Get PDF
    Secondary circulation is known to be an important feature of many atmospheric and laboratory boundary layers. The presence of streamwise, helical, counterrotating vortices is documented here for the first time in the bottom boundary layer of a large natural body of water. Simultaneous vertical profiles of velocity and temperature were recorded on either side of a sedimentary furrow on the floor of Lake Superior (depth = 100 m) in November 1985. Flow roughness length zo was estimated to be 0.3 cm. Friction velocity u* and turbulent boundary layer thickness LW were estimated for each profile allowing for stratification effects. Typically, LW ≈ 10 m. Thermal stratification near the lake bed was an important constraint to boundary layer development; bottom mixed layers were absent in most cases. Mean flow toward the furrow at lower levels within the boundary layer (z/LW\u3c0.37) and mean flow away from the furrow at higher levels (0.37 \u3c z/LW \u3c 1.65) were observed for near‐bottom speeds greater than 6 cm/s when mean flow direction was within 25° of the furrow direction. This implies helical vortex pair circulations with upward motion over the furrow, consistent with earlier hypotheses. Cross‐stream (secondary) flows were typically 5% of the free stream (primary flow) speed. Streamwise vorticity in the range 1.5 m ≤ z ≤ 5 m was estimated to be 2.1×10−3 s−1

    Spin singlet small bipolarons in Nb-doped BaTiO3

    Full text link
    The magnetic susceptibility and electrical resistivity of n-type BaTi{1-x}Nb{x}O3 have been measured over a wide temperature range. It is found that, for 0 < x < 0.2, dopant electrons form immobile spin singlet small bipolarons with binding energy around 110 meV. For x = 0.2, a maximum in the electrical resistivity around 15 K indicates a crossover from band to hopping transport of the charge carriers, a phenomenon expected but rarely observed in real polaronic systems.Comment: 5 pages, 4 figure

    The onset of dissipation in high-temperature superconductors: magnetic hysteresis and field dependence

    Full text link
    Recently, we showed that the self-field transport critical current, Ic(sf), of a superconducting wire can be defined in a more fundamental way than the conventional (and arbitrary) electric field criterion, Ec = 1 microV/cm. We defined Ic(sf) as the threshold current, Ic,B, at which the perpendicular component of the local magnetic flux density, measured at any point on the surface of a high-temperature superconducting tape, abruptly crosses over from a non-linear to a linear dependence with increasing transport current. This effect results from the current distribution across the tape width progressively transitioning from non-uniform to uniform. The completion of this progressive transition was found to be singular. It coincides with the first discernible onset of dissipation and immediately precedes the formation of a measureable electric field. Here, we show that the same Ic,B definition of critical currents applies in the presence of an external applied magnetic field. In all experimental data presented here Ic,B is found to be significantly (10-30%) lower than Ic,E determined by the common electric field criterion of Ec = 1 microV/cm, and Ec to be up to 50 times lower at Ic,B than at Ic,E.Comment: 14 pages, 10 figure

    The interpretation of the field angle dependence of the critical current in defect-engineered superconductors

    Full text link
    We apply the vortex path model of critical currents to a comprehensive analysis of contemporary data on defect-engineered superconductors, showing that it provides a consistent and detailed interpretation of the experimental data for a diverse range of materials. We address the question of whether electron mass anisotropy plays a role of any consequence in determining the form of this data and conclude that it does not. By abandoning this false interpretation of the data, we are able to make significant progress in understanding the real origin of the observed behavior. In particular, we are able to explain a number of common features in the data including shoulders at intermediate angles, a uniform response over a wide angular range and the greater discrimination between individual defect populations at higher fields. We also correct several misconceptions including the idea that a peak in the angular dependence of the critical current is a necessary signature of strong correlated pinning, and conversely that the existence of such a peak implies the existence of correlated pinning aligned to the particular direction. The consistency of the vortex path model with the principle of maximum entropy is introduced.Comment: 14 pages, 7 figure

    From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information

    Get PDF
    In this paper we present a framework for addressing a variety of engineering design challenges with limited empirical data and partial information. This framework includes guidance on the characterisation of a mixture of uncertainties, efficient methodologies to integrate data into design decisions, and to conduct reliability analysis, and risk/reliability based design optimisation. To demonstrate its efficacy, the framework has been applied to the NASA 2020 uncertainty quantification challenge. The results and discussion in the paper are with respect to this application

    Using a realist approach to evaluate smoking cessation interventions targeting pregnant women and young people

    Get PDF
    Background This paper describes a study protocol designed to evaluate a programme of smoking cessation interventions targeting pregnant women and young people living in urban and rural locations in Northeast Scotland. The study design was developed on so-called 'realist' evaluation principles, which are concerned with the implementation of interventions as well as their outcomes. Methods/design A two-phased study was designed based on the Theory of Change (TOC) using mixed methods to assess both process and outcome factors. The study was designed with input from the relevant stakeholders. The mixed-methods approach consists of semi-structured interviews with planners, service providers, service users and non-users. These qualitative interviews will be analysed using a thematic framework approach. The quantitative element of the study will include the analysis of routinely collected data and specific project monitoring data, such as data on service engagement, service use, quit rates and changes in smoking status. Discussion The process of involving key stakeholders was conducted using logic modelling and TOC tools. Engaging stakeholders, including those responsible for funding, developing and delivering, and those intended to benefit from interventions aimed at them, in their evaluation design, are considered by many to increase the validity and rigour of the subsequent evidence generated. This study is intended to determine not only the components and processes, but also the possible effectiveness of this set of health interventions, and contribute to the evidence base about smoking cessation interventions aimed at priority groups in Scotland. It is also anticipated that this study will contribute to the ongoing debate about the role and challenges of 'realist' evaluation approaches in general, and the utility of logic modelling and TOC approaches in particular, for evaluation of complex health interventions
    corecore