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Uncertainty quantification is a vital part of all engineering and scientific pursuits. Some of the current most
challenging tasks in UQ involve accurately calibrating, propagating and performing optimisation under aleatory
and epistemic uncertainty in high dimensional models with very few data; like the challenge proposed by
Nasa Langley this year. In this paper we propose a solution which clearly separates aleatory from epistemic
uncertainty. A multidimensional second-order distribution was calibrated with Bayesian updating and used as an
inner approximation to a p-box. A sliced normal distribution was fit to the posterior, and used to produce cheap
samples while keeping the posterior dependence structure. The remaining tasks, such as sensitivity and reliability
optimisation, are completed with probability bounds analysis. These tasks were repeated a number of times as
designs were improved and more data gathered.

Keywords: Bayesian calibration, second-order distribution, probability bounds analysis, uncertainty propagation,
uncertainty reduction, epistemic uncertainty, optimization under uncertainty

1. Introduction
In this paper, it will be assumed that the reader is
familiar with the NASA challenge manifesto (Cre-
spo and Kenny, 2020). In this challenge a con-
trol system is emulated using a black-box model.
Efficient propagation of uncertainty through such
a model would provide a flexible solution to the
study of uncertainty in many fields of science
and engineering. A distinction between aleatory
and epistemic uncertainty is made, thus the two
kinds will be treated differently. Such a distinc-
tion carries strong practical implications, which is
expressed in the adopted solution strategy. The
aleatory uncertainty is modelled with probability
theory, thus for the problem under consideration,
by means of continuous probability distributions.
The epistemic uncertainty is modelled by means
of bounded sets, whose shape is defined by the
dependence structure of the epistemic variables.
Because the aleatory model is not given, and must
therefore be constructed solely from the data pro-
vided by the hosts, additional epistemic uncer-
tainty is injected in the model to account for the
provided limited data, and to mitigate the choice
of a specific probabilistic family for such model.
A double-loop uncertainty propagation scheme is
at the core of the strategy to ensure separation
between the two kinds of uncertainty.

2. Problem A: Model Calibration &
Uncertainty Quantification

Part A of the challenge is to efficiently calibrate
the model’s input against the limited experimental
data that is given. A calibrated uncertainty model
will constitute a five-dimensional probability dis-
tribution for A and a reduced four-dimensional
hyperbox for E. Most of the existing methods for
uncertainty characterisation, such as Bayesian, in-
terval, and frequentist model updating are usually
suited for one and not both of these tasks (Nagel
and Sudret, 2016). The dimension of the model’s
output also presents a challenge. A single nine
dimensional vector of model inputs produces a
5001 discretised time series. The calibration data
provided represents 100 discretised time series;
which can be viewed as a stochastic process, with
samples from a distribution at each time point.
After inspection it can be seen that the provided
data is both non-Gaussian and non-stationary. In
this section, the calibration of the uncertainty
model UM is performed against the first set of data
D1 =

{
y(i)(t)

}
. As a result of this calibration, the

initiating nine dimensional hyperbox is updated
into the uncertainty model UM-y. After the second
calibration on the set of data D2 =

{
z

(i)
1:2(t)

}
, the

uncertainty model will be denoted as UM-z.

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference.
Edited by Piero Baraldi, Francesco Di Maio and Enrico Zio
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2.1. Creation and Calibration of an
Uncertainty Model

2.1.1. Probabilistic model for A

The problem of simultaneously calibrating A and
E may be overcome by selecting a parametric
model for A. The parameters of this probabilistic
model may then be included with the four epis-
temic inputs and standard calibration technique
may then be used. The Beta distribution is a
two parameter distribution which produces a wide
variety of shapes, and is bounded to the [0, 1]
interval, which is favourable sinceA is bounded to
[0, 2]. The Beta distribution may be scaled to this
range (nis, 2020). Five beta distributions were se-
lected for the marginal distributions of A, one per
dimension; adding ten (two per dimension) extra
parameters to be included in the calibration. Once
parametric families for the marginal distributions
of A have been selected, a multivariate distribu-
tion may be created by selecting a parametric cop-
ula family (Joe, 2006). A Gaussian copula family
was used to construct the dependency structure
for A, which takes a 5x5 correlation matrix as an
input, the off diagonal elements of which may be
varied to create different dependence structures. A
valid correlation matrix must be semi-positive def-
inite. It has however been shown in Joe (2006) that
a semi-positive definite correlation matrix may
be parametrised in terms of partial correlations,
which all independently take values in [−1, 1]. It
is shown that this parametrisation reaches all pos-
sible correlation matrices. Thus ten partial corre-
lations, which may all take values between [−1, 1]
may be included in the calibration procedure to
define the dependence structure for A. Under
this parametrisation of fA 20 extra dimensions
are added to the original four Epistemic inputs to
the model. The complete set of parameters are
summarised in Table 1. The 24-dimensional input
vector e1:24 ∈ E ×EB , where EB ⊆ R20 defines
the epistemic space for the Beta model, uniquely
defines a five-dimensional probability distribution
and a point in model’s epistemic input. Figure 1
shows three random 5 dimensional distributions
sampled using this scheme.

2.1.2. Propagation

Under this parametrization aleatory and epistemic
uncertainty are treated separately, and may be
propagated separately by means of double loop
Monte Carlo. The propagation procedure is out-
lined in the following steps:
*Generate a random sample of e1:24
*Create a FA(a|e5:24) using e5:24
*Generate samples of a ∼ FA(a|e5:24)
*Propagate samples a with point e1:4

This sampling process, first releasing a random
probabilistic model and then evaluating its sam-

Fig. 1. Three random realisations of the probabilistic model

ples in the model, produces a probability distri-
bution at each point in time in the output do-
main a.k.a. stochastic process. Repeating this
sampling process leads to a second-order distri-
bution in the output domain, or a distribution of
distributions, at each point in time. Second-order
distributions are very difficult to work with in
practice, and so they are often approximated as
probability boxes (p-box), by taking the envelope
over the 2nd-order distributions CDFs (Ferson and
Troy Tucker, 2006). Although the internal struc-
ture of the 2nd-order distribution is lost, the p-box
contains bounds on all of properties of the 2nd-
order distribution (i.e. bounds on the moments,
bounds on the tails etc.). This is what the authors
of the challenge question refer to as the inner
approximation to the p-box. In both the cases,
epistemic and aleatory uncertainty are clearly sep-
arated by the p-box and the 2nd- order distri-
bution. The aleatory uncertainty is encoded by
each of the singular distributions of the 2nd-order
distribution, or by the distribution which the p-
box is bounding; whilst the epistemic uncertainty
is encoded by the difference of each individual
distributions, or by the width of the p-box. As
epistemic uncertainty is reduced, the distributions
become more similar, or the bounds of the p-
box tighten. With zero epistemic uncertainty,
the bounds of the p-box meet creating a singular
distribution. With a reduction in aleatory uncer-
tainty, the bounds of the p-box steepen; eventually
becoming an interval.

2.1.3. Calibration

Under this parametrisation, a standard calibra-
tion technique may be performed over e1:24. In
Bayesian model updating, one would like to con-
struct a probability distribution over e1:24 that is
reflective of the provided experimental data. For
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Table 1. Summary of parameters.

Epistemic inputs to the model Parameters for marginals of FA Partial correlations of FA

Parameter e1:4 e5:14 e15:24
Prior bounds [0, 2] [0, 100] [−1, 1]

this, a uniform distribution was used as a prior
with bounds defined in Table 1, which reflects
the analysts knowledge about the parameter space
e1:24 before observing any data, and altering or
updating it such that the updated distribution (a
posterior) matches the experimental data in the
output domain.

2.1.4. Stochastic area metric

Accurate estimation of the predictive density is
very costly, and would require a large amount of
samples and possibly a density estimator such as
Kernel Density Estimation. We therefore follow
a similar approach outlined in Bi et al. (2019),
where the likelihood is replaced by an approx-
imate likelihood based on a stochastic distance
metric. A stochastic distance metric defines dis-
tances between probability distributions (ie. de-
fines how dissimilar two are). This framework
fits well in our problem, since both our predictive
distribution (for a fixed e1:24) and the experimen-
tal data are distributional. We may therefore de-
fine a higher likelihood for points in e1:24 which
produce similar distributions to D, and penalise
points which produce distributions which are “far”
to D w.r.t our metric. We define an approximate
likelihood based on the Gaussian distribution for
each time point, as:

likelihood(D|e1:24) ∝ exp{−d
2

ε2
} (1)

Where, d is the area metric and ε is called the
“width factor” which defines the spikiness of the
posterior. The d is the stochastic area metric is
defined as:

d(FP , FD) =

∫ +∞

−∞
|FP (x)− FD(x)| dx (2)

where FP and FD are the empirical cumulative
distribution functions of the prediction and data
respectively. The area metric has the favourable
property that it works well for distribution func-
tions which are far away as well as near, as op-
posed to other metrics such as K-S distance or
the Bhattacharyya distance which require a large
overlap between FD and FP . We can therefore
perform the Bayesian updating in a single step,
instead of the 2-step updating pursued by Bi et al.
(2019) using the Bhattacharyya distance.

The likelihood Eq.(1) is computed at every time
point in the output, then the likelihood for the sam-
ple e1:24 may be computed by taking the product

Fig. 2. Shows the calibrated model in blue, with the ex-
perimental data in red. All of the samples of the 2nd order
distribution have been plotted on the same axis.

of every time point. This would require 5001 eval-
uations of the integral Eq.(2), and would add sig-
nificant cost to the Bayesian updating. To reduce
the number of comparisons that must be done, this
procedure may be done in the Fourier domain.
It can be seen that with about 30 harmonics the
output signal is well represented. Therefore, if
a Fourier transformation is performed of the ex-
perimental data and of the predictive distribution
only 60 (30 real and 30 imaginary) evaluations of
Eq.(1) and Eq.(2).

With a prior and a likelihood now defined, sam-
ples of the posterior may now be simulated by
an Markov Chain Monte Carlo (MCMC) algo-
rithm. For this work Transitional Markov Chain
Monte Carlo Ching and Chen (2007) was used,
an MCMC algorithm which works well for high
dimensional problems such as this. 520 samples
of the posterior were drawn. Figure 2 shows the
calibrated model output against the provided data.
The output of the calibrated model is now a p-
box at each point in time. Figure 3 shows this
predictive p-box at the time slice t = 2s compared
to the experimental data. If you inspect the p-box
at other points in time (not shown), it can be seen
that the tails of the data are captured by most, but
not all, of the predictive p-boxes. This is one of
the main drawbacks from using 2nd - order Monte
Carlo as a propagation method: that a very large
number of samples are needed for high dimen-
sions. We have however proposed a cheap method
for generating a large number of samples of this
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Fig. 3. Shows a comparison of the predictive p-box (blue) to
the ecdf of the experimental data (red) at t = 2s.

24 dimensional posterior, which we will cover in
the next subsection. The second reason may be
that our choice of stochastic metric in Eq.(2) is
not very sensitive to the tails of distributions. If
a metric which gives higher weight to the tails of
distributions we believe the tails would be better
captured even with a low number of samples.

2.2. Sliced Normals for Propagation
Due to the difficulty of sampling in the beta-
model epistemic space through Bayesian Updat-
ing, a means of efficiently generating additional
samples of the posterior is required. Sliced normal
distributions are a flexible means of modelling
multivariate distributions with non-Gaussian de-
pendence (Crespo et al., 2019). The approach
used here to calculate the optimal sliced normal
parameters matches that of Colbert et al. (2020).
The pseudo code for generating 104 additional
samples from the beta-model epistemic space us-
ing a sliced normal distribution is as follows:

(1) Samples from beta-model epistemic space
e

(1:Ne)
B ⊆ EB Bayesian posterior are taken

as the physical-space input.
(2) 2-Degree of freedom monomial vector is

generated for each e
(i)
B , producing an ex-

panded 324-dimensional feature space dataset
Z

(1:Ne)
B .

(3) Mean µZ and unscaled covariance Σ∗Z calcu-
lated for feature space dataset.

(4) Hyper-Ellipse fit over physical-space input
data to generate support samples s(1:Nb)

B ⊆
EB for estimation of normalisation constant.

(5) Support samples generated within hyper-
ellipse, expanded into 2-degree of freedom
monomial vector to produce support set in
feature space.

(6) Feature space support and input data set like-
lihoods maximised through optimisation of
scaling parameter γ to produce scaled covari-
ance ΣZ .

(7) 104 Markov chains initialised from random
seeds within s

(1:Nb)
B to produce first sample

set.
(8) Final e(1:104)

B ⊆ EB samples generated from
unnormalised sliced normal with parameters
µZ and ΣZ using TMCMC algorithm. Sam-
ple likelihoods are evaluated using the unnor-
malised sliced normal distribution.

Generation of 104 sliced-normal samples takes
roughly 90 minutes when parallelised using a 4-
core Intel i7-7700HQ processor.

2.3. Justification of uncertainty model
Whilst a single Beta-marginal multivariate distri-
bution is likely not capable of representing the
’true’ aleatory distribution, resorting to an impre-
cise Beta model with imprecise correlation among
the marginals may give us the flexibility that is
needed to rigorously describe the observations,
and produce a structure that can be generalised to
a p-box containing the distribution in the aleatory
space. Generating samples from the sliced normal
approximation of the epistemic distribution allows
for a more accurate estimation of the aleatory p-
box bounds without the heavy computational cost
of producing further samples through Bayesian
updating. The geometry for E reflects the degree
to which we were able to update the UM given
the limited evidence and the dependence structure
between these parameters. The implementation
of sliced-normals, as discussed in the previous
section, will enable us to preserve the posterior
shape for E, while improving the efficiency of
sampling E.

3. Problem B: Uncertainty Reduction
The task of ranking the epistemic parameters ac-
cording to their ability to improve the predictive
ability of the computational model and conse-
quently determine their reductions is a challenging
one, because it cannot be done using naı̈ve imple-
mentations of variance-based sensitivity analysis.
In response to this challenge, we need a metric that
can quantify the amount of both variability and
incertitude characterising the UM, and can simul-
taneously score the output against the observed
data, as well as deal with high-dimensional output.

3.1. Ranking of epistemic parameters
The ranking of the epistemic parameters is done
via scoring each of the 8 possible refinements
{e−i , e

+
i }, i = 1 : 4, where e−i denote a request

for the lower bound of the ei to be increased,
whilst e+

i denote a request for the upper bound
of ei to be decreased. For UM-0: e−i = [0, 1] and
e+
i = [1, 2]. The ranking is done by comparing

the amount of epistemic uncertainty carried by
the output y(t) before and after the refinement,
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and simultaneously checking that the data D1 still
fall within the bounds produced by the epistemic
uncertainty. The comparison is enabled by the
area metric of Eq.(2), which quantifies the amount
of area contained between two distributions or
datasets.

For the purpose of the sensitivity analysis, the
calibrated uncertainty model of Problem A, con-
sisting of correlated second-order probability dis-
tribution, is converted in its equivalent bounded
counterpart. So the 24-dimensional epistemic
space is boxed in an hyper-rectangle containing all
the samples resulting from the Bayesian updating.
This has allowed us to treat as probability boxes
the calibrated inputs for the sake of the uncertainty
propagation. When the metric is applied to the
two bounding distributions of a probability box
(p-box), the resulting area metric quantifies the
amount of epistemic uncertainty carried by the p-
box itself. After the refinement, the area of the
p-box shrinks (at best does not change) to reflect
the fact that less epistemic uncertainty is projected
to the output following refinement. Denoting with
[FY ]0 and [FY ]e∗i the p-box of the output y(t) be-
fore and after the refinement e∗i = {e−i , e

+
i }, and

withW0 andWe∗i
their respective area metrics, we

compute the sensitivity indices as:

Sei = 1−
We−i

+We+i

2 W0
. (3)

In order for the computation of Eq.(2) to succeed
the p-boxes [FY ]ei need to be fully nested in
[FY ]0, i.e. [FY ]ei ⊆ [FY ]0. When this does
not hold, negative sensitivity indexes can show up.
When the uncertainty propagation is not rigorous
it is not obvious to avoid this problem. A meta-
model strategy has been developed within this
work to ensure that the nesting always occurs. An
additional step is endured to check that the empir-
ical CDF–carrying confidence bounds–of the data
D1 falls within the reduced p-box.

The ranking of the epistemic parameters is
done by sorting Sei , computed as in Eq.(3) in
descending order, with the most sensitive param-
eter carrying the highest sensitivity index. This
analysis is commonly referred to in literature as
value-of-information (VoI) sensitivity (Ferson and
Troy Tucker, 2006). For comparison, variance-
based sensitivity analysis was also conducted on
both prior and posterior space. Main- and total-
effect sensitivity indexes were computed as in
Sobol (2001). The main effect index weighs the
importance of each individual input, while the
total effect provides information about the sig-
nificance of input interactions. Sobol’ indices
were obtained using the updated posterior, draw-
ing Ne = 5000 samples from the sliced-normals
of Fe. Since the model of the subsystem has a
time-varying output, the Sobol sensitivity indices
were obtained at each of the 5001 time steps,

Fig. 4. Refinement e2+ for harmonics 6, 18, 19.

whilst the VoI Sei were computed in the reduced
Fourier space looking at the first 85 harmonics. A
summary of the ranking is provided in Table 2. In
Table 2, UM-0 and UM-y are respectively the UMs
before and after the calibration.

Table 2. Summary of sensitivity ranking. Value-of-info’ v.
main- and total-effect Sobol indices.

UM-y UM-0
VoI Total Main VoI Total

e2 0.2758 0.1706 0.0264 0.2296 0.3535
e3 0.1675 0.0131 0.0063 0.0756 0.0455
e1 0.1447 0.0179 0.0092 0.0785 0.1401
e4 0.0524 0.0002 0.0045 0.0565 0.0011

Both VoI and variance-based method largely
agree on the top-ranked parameters e2 carrying
the highest sensitivity indices. A slight difference
between the two methods holds for the ranking of
parameters e3 and e1, which are ranked differently
however above e4.

3.2. Parameter refinement
The parameter refinements are scored as in Eq.(4)
by computing the relative amount of reduced un-
certainty that each carries compared to the total.

Se∗i = 1−
We∗i

W0
, ∗ = {−,+} (4)

Eq.(4), where Se−i
+ Se+i

= Sei , weighs the
importance of each partial index Se∗i towards the
whole index Sei . The results are summarised in
Table 3.

Out of 8 possible refinements and a maximum
of allowed k ≤ 4, we have requested one reduc-
tion for this problem. The updated UM of δ in-
corporating the reduction provided by the NASA
hosts will be referred to as UM-y-1.
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Table 3. VoI weights for each refinement.

Se∗i
e1 e2 e3 e4

e−i 0.0828 0.1348 0.0294 0.0130
e+i 0.0618 0.1410 0.1381 0.0394

4. Problem C: Reliability Analysis
The challenge of problem C is to balance the
computational cost with the precision of the fail-
ure probability estimators. The non-linearity of
the system complicates this task. Moreover, the
severity estimator is very sensitive to the UM
in the tails. It is also really difficult to obtain
precise lower failure probability bounds due to
the epistemic uncertainty at the tails of our cali-
brated model. We question the interpretation of
small failure probabilities (< 10−4) yielded by
advanced Monte Carlo methods such as impor-
tance sampling, given the paucity of data n1 =
100, and if explicitly accounting for the epistemic
uncertainty can allow us to bounds such small
failure probability.

4.1. Range of failure probability for
individual and all requirements

The range of failure probability R, for each in-
dividual requirement g1:3 for the baseline design,
θbase, are estimated via double loop sampling.
The uncertainty propagation is done as follows:

• Outer loop: Ne epistemic realizations are ob-
tained and each sample e(i) uniquely define a
probabilistic model FA.

• Inner loop: the probability operator P[·] is
estimated sampling Na aleatory realizations
from FA.

For instance, the failure probability for the inte-
grated system is estimated in the inner loop as

1
Na

∑Na

i=1 1w(i)>0, where w(i) = w(θ, δ(i)) and
1w(i)>0 is the indicator function for the condition
w(i) > 0 (any failure). In the outer loop the
minimum (maximum) operator is approximated
via the samples as mine(1:Ne){·} ≈ mine∈E{·}.

The number of samples limits the precision
that can be obtained for R. Moreover, strong
non-linearities of the g1:3 combined with poor
coverage of the epistemic domain can lead to
inner approximations of the bounds of these op-
erators. The inner approximation of these bounds
is reduced by: (*) sampling the sliced normal of
the posterior distributions in E × EB for better
coverage; (*) loosening the Beta assumption by
adopting a focal element propagation scheme for
counterbalancing inner approximations.

In Table 4, we show the results of the above

analysis with respect to R. The reliability per-
formance of θbase is estimated using Ne = 104

epistemic samples and Na = 200 aleatory sam-
ples from UM-y. The most uncertain reliability
scores for θbase are with respect to, in order, set-
tling time [0, 0.99], stability [0, 0.67], and energy
consumption [0, 0.27].

4.2. Rank of epistemic uncertainty onR
In this section we are asked to rank the epistemic
uncertainties according to the contraction of R(θ)
that might result from their reduction. To do so we
use a value of information metric, which measures
the reduction in area of the p-box of g1:3 for a fixed
value of e1:4, relative to the area obtained with
all parameters varying in their posterior range.
Additionally, any reduction in the range of R
was also taken into account. The performance
requirements g1:3 showed high sensitivity towards
the epistemic uncertainty in the UM. Only modest
contraction of R1:3 were computed, with parame-
ters e1 and e2 ranking highest.

4.3. Identify realizations of δ with large
likelihood near the failure domain

We isolated a focal element for each failing re-
quirement g1:3 = 0, so three in total, and iden-
tified the realizations in the input domain falling
inside these three focal elements. Equivalently, we
looked at the p-box lower bound of each require-
ment, and isolated the samples near the failure
domain. We then identified three examples of
time responses for each type of failure. We then
conducted a parallel-plot study to highlight the
24-dimensional vector of epistemic realization of
δ that were closer to the failure domain, as well
as plotted 2-d projections of the failure region for
each pair of δ1:9.

4.4. Severity of requirement violation
The severity of each individual requirement and
joint requirements is estimated via double loop
Monte Carlo. The accuracy of this estimator is
more sensitive to the number of aleatory samples
if compared to R, i.e. an outlier can alter substan-
tially the value of the severity. The quality of a
design θ is evaluated on the basis of the reliability
indicators presented in Crespo et al. (2019). Ad-
ditionally, the following severity indicator for the
integrated system is considered sw(θ) =

max
e∈E
{E[w(θ, δ)|w(θ, δ) > 0]× P[w(θ, δ) > 0]}

sw(θ) is also referred to as the severity score for
the integrated system and the design. If the value
of w when w > 0 is a measure of the severity
of failures, the analyst might want to control not
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only the failure probability but also the shape and
thickness of the upper tail of w. The conditional
expectation E[w|w > 0] is estimated by sampling
Na times the aleatory space as follows:

E[w(θ, δ)|w(θ, δ) > 0] =

∑Na

i=1 w
(i)1w(i)>0∑Na

i=1 1w(i)>0

The requirements ranking for the most severe fail-
ures are reversed in order compared to the reli-
ability ones, see Table 4, with the energy con-
sumption potentially leading to the most severe
failures s3(θbase) = 0.7154. Figure 5 shows the
composite failure regions and safe regions on 2-d
projections of the space of uncertain factors.

5. Problem D: Reliability-Based Design

5.1. Optimality criteria
Failure probability and severity of the integrated
system are selected as suitable metrics to define
a new candidate design. To address the RBDO
problem we focused our attention on two opti-
mization programs defined as follows:

〈θ?R〉 = arg min
θ∈Θ
{max
e∈E

P[w(θ, δ) > 0]} (5)

〈θ?s〉 = arg min
θ∈Θ
{sw(θ)} (6)

where Θ is the design space, which is not provided
in the challenge. Two suitable choices can be
made for Θ: (a) consider the hypercube [−10, 10]9

centred on the baseline design, or (b) consider
Θ to be unbounded and new tentative designs
are randomly generated around the baseline at a
distance that is a fraction (typically a half) of
the baseline absolute value. Program (5) seeks
a design θ?R which minimizes the upper bound
on the failure probability approximated via sam-
pling. Differently, program (6) seeks a design θ?s
that minimizes severity function for the integrated
system, i.e., a combination of failure probabil-
ity and mass of w in the failure region. Both
objective functions are non-convex in the space
of θ and local optimization methods ineffective.
Furthermore, P[w(θ, δ) > 0] is step-wise discon-
tinuous function in A. For this reasons, we se-
lected a global gradient-free optimization strategy
to search for an optimal candidate design θnew.

5.2. Computational approach
Genetic Algorithm is the computational viable
optimization method selected. This is because in-
dividual requirements are competitive and failures
not mutually exclusive. Hence, a contraction of
one failure region generally leads to the expansion
of another. Out-of-sample errors for the severity
are higher. Failure probability and severity esti-
mators are stepwise discontinuous functions.

g2>0, g3>0

g1>0, g2>0

g1>0, g2>0, g3>0

θbase θnew

θfinal

g3>0 g2>0

g2>0

g3>0

g1>0

g2>0

 g1>0

 g{1:2}>0

 g{1:3}>0

g2>0

Fig. 5. Projections of the individual failure regions and safe
regions (blue) induced by θbase (3 panels on the top-left),
θnew (3 panels on the top-right), and θfinal. White markers
show realization of a1, a2 and a3 for the proposed models
UM-y (top panels) and UM-z (bottom panel).

5.3. Analysis for θnew

Table 4 presents the results of the optimization.
The reliability metrics are obtained as described
for the baseline design. It can be observed a
substantial improvement of the severity and re-
duction of upper bound on the system reliabil-
ity. Figure 5 shows projections of the failure
(red) and safe (blue) regions on the uncertainty
space. The transparent markers are aleatory and
epistemic samples obtained from the model of the
uncertainty. Although this is only a 2-d projection
of a 9 dimensional space, it can be observed that
the failure regions has been pushed away from the
samples, i.e., away from the high-probability mass
of the proposed uncertainty model.

6. E: Model Update & Design Tuning
Upon finding a new design point θnew, the last
problem of the challenge is to perform a final im-
provement to the UM and design. After providing
θnew to the challenge hosts, 100 realisations of
the subsystems Z1 and Z2 were provided for cali-
bration. The calibration approach pursued here is
identical to that described in section 2, where the
new data was used alongside the original data to
improve the UM. A sensitivity analysis identical
to that in section 3 was done to request the 3 more
parameter refinements to E. These refinements
were selected with the analysis performed with
respect the subsystems Z1, Z2 and Y , ranking
parameters as in Table 5. Once the challenge hosts
returned with 3 reductions to E, the UM was cal-
ibrated a final time over this reduced space. The
updated model was then used within the RBDO
described in Section 5 to obtain θfinal. Table 4
presents the reliability scores for θfinal and Figure
5 shows a 2-d projection of the individual failure
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Table 4. Summary of RBDO results for UM-y and UM-z estimated using Ne = 104 and Na = 200.

Design Rw(θ) R1(θ) R2(θ) R3(θ) sw(θ) s1(θ) s2(θ) s3(θ)

θbase (UM-y) [0,0.99] [0,0.67] [0,0.99] [0, 0.269] 0.7393 0.1197 0.0171 0.7154
θbase (UM-z) [0,0.7] [0,0.7] [0,0.51] [0,0.19] 0.4511 0.1522 0.0106 0.3649
θ?new (UM-y) [0,0.980] [0,0.359] [0,0.976] [0,0.0348] 0.0572 0.0527 0.0070 0.0170
θ?new (UM-z) [0,0.12] [0,0] [0,0.12] [0,0.045] 0.0126 0 3.69×10−4 0.0125
θ?final (UM-y) [0,0.985] [0,0] [0,0.985] [0,0] 0.0039 0 0.0039 0
θ?final (UM-z) [0,0.075] [0,0] [0,0.075] [0,0] 1.27×10−4 0 1.27×10−4 0

Table 5. Summary of VoI sensitivity ranking for UM-z.

e1 e2 e3 e4

Y ,Z1,Z2
e− 0.406 0.306 0.208 0.137
e+ 0.679 0.169 0.429 0.230

regions. Similarly to θnew, the most uncertain
reliability score for θfinal is with respect to the
settling time requirement. However, the epistemic
uncertainty affecting this score decreased substan-
tially with the new model of the uncertainty, i.e.,
from [0,0.985] to only [0,0.075].

Conclusions
In this paper we have presented a summary of
results addressing the NASA UQ challenge. The
Nasa UQ problems are designed to be on the
edge of what is possible with current UQ meth-
ods, to focus efforts in the UQ community and
push forward the state of the art. Our proposed
strategy is therefore a collection of methods which
have appeared recently in literature, and some of
which have been adapted to the stringent chal-
lenge requests: a Bayesian method with stochastic
distances for calibrating aleatory and epistemic
uncertainty, sliced normal distributions for high
dimensional density estimation and sampling, an
information based sensitivity analysis with prob-
ability boxes, and an efficient reliability analysis
and design with probability bounds analysis; all
performed on a computational model with a high
dimensional output. Given the broad formulation
of the challenge the proposed set of methods can
find a broad range of applications. Disclaimer:
Given eight-page limit, figures that would have
significantly improved clarity of the manuscript
could not be presented in the paper. Because of the
open challenge, we were not allowed to disclose
the reduced epistemic parameters and the design
points leading to the presented results.
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