184 research outputs found
Parameterized Verification of Safety Properties in Ad Hoc Network Protocols
We summarize the main results proved in recent work on the parameterized
verification of safety properties for ad hoc network protocols. We consider a
model in which the communication topology of a network is represented as a
graph. Nodes represent states of individual processes. Adjacent nodes represent
single-hop neighbors. Processes are finite state automata that communicate via
selective broadcast messages. Reception of a broadcast is restricted to
single-hop neighbors. For this model we consider a decision problem that can be
expressed as the verification of the existence of an initial topology in which
the execution of the protocol can lead to a configuration with at least one
node in a certain state. The decision problem is parametric both on the size
and on the form of the communication topology of the initial configurations. We
draw a complete picture of the decidability and complexity boundaries of this
problem according to various assumptions on the possible topologies.Comment: In Proceedings PACO 2011, arXiv:1108.145
Constrained by managerialism : caring as participation in the voluntary social services
The data in this study show that care is a connective process, underlying and motivating participation and as a force that compels involvement in the lives of others, care is at least a micro-participative process. Care or affinity not only persisted in the face of opposition, but it was also used by workers as a counter discourse and set of practices with which to resist the erosion of worker participation and open up less autonomized practices and ways of connecting with fellow staff, clients and the communities they served. The data suggest that while managerialism and taylorised practice models may remove or reduce opportunities for worker participation, care is a theme or storyline that gave workers other ways to understand their work and why they did it, as well as ways they were prepared to resist managerial priorities and directives, including the erosion of various kinds of direct and indirect participation. The degree of resistance possible, even in the highly technocratic worksite in Australia, shows that cracks and fissures exist within managerialism
Power management and control strategies for off-grid hybrid power systems with renewable energies and storage
This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio
Committing curriculum time to science literacy: The benefits from science based media resources
Kaposi sarcoma-associated herpesvirus (KSHV) is linked with the development of Kaposi sarcoma and the B lymphocyte disorders primary effusion lymphoma (PEL) and multi-centric Castleman disease. T cell immunity limits KSHV infection and disease, however the virus employs multiple mechanisms to inhibit efficient control by these effectors. Thus KSHV-specific CD4+ T cells poorly recognize most PEL cells and even where they can, they are unable to kill them. To make KSHV-infected cells more sensitive to T cell control we treated PEL cells with the thymidine analogue azidothymidine (AZT), which sensitizes PEL lines to Fas-ligand and TRAIL challenge; effector mechanisms which T cells use. PELs co-cultured with KSHV-specific CD4+ T cells in the absence of AZT showed no control of PEL outgrowth. However in the presence of AZT PEL outgrowth was controlled in an MHC-restricted manner. To investigate how AZT sensitizes PELs to immune control we first examined BJAB cells transduced with individual KSHV-latent genes for their ability to resist apoptosis mediated by stimuli delivered through Fas and TRAIL receptors. This showed that in addition to the previously described vFLIP protein, expression of vIRF3 also inhibited apoptosis delivered by these stimuli. Importantly vIRF3 mediated protection from these apoptotic stimuli was inhibited in the presence of AZT as was a second vIRF3 associated phenotype, the downregulation of surface MHC class II. Although both vFLIP and vIRF3 are expressed in PELs, we propose that inhibiting vIRF3 function with AZT may be sufficient to restore T cell control of these tumor cells
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R01-DC00270U.S. Air Force - Office of Scientific Research Contract AFOSR-90-0200National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Training Systems Center Contract N61339-93-M-1213U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0055U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0083U.S. Navy - Office of Naval Research Grant N00014-92-J-4005U.S. Navy - Office of Naval Research Grant N00014-93-1-119
Sensory Communication
Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit
- …
