803 research outputs found

    A blast of mistakes: undiagnosed cervical ppondylolisthesis following a bomb explosion

    Get PDF
    Background: A case of spinal trauma had an unusual clinical course due to medical mistakes, from which we can learn some important lessons. Case Report: We report a case of spondylolisthesis following a bomb explosion, which went undiagnosed for a long time because of a series of mistakes that are highlighted in this article. What makes this case unique is that the spondylolisthesis developed during hospital stay, but the patient had no loss of mobility, strength, or sensitivity. Conclusions: This case shows that establishing the conditions of an organ or a body part upon admission to hospital may not be enough when a patient has suffered extensive and serious trauma, and that it is necessary to carry out more checkups over time, especially if there are new clues and symptoms

    An Improvement Study of the Decomposition-based Algorithm Global WASF-GA for Evolutionary Multiobjective Optimization

    Get PDF
    The convergence and the diversity of the decompositionbased evolutionary algorithm Global WASF-GA (GWASF-GA) relies on a set of weight vectors that determine the search directions for new non-dominated solutions in the objective space. Although using weight vectors whose search directions are widely distributed may lead to a well-diversified approximation of the Pareto front (PF), this may not be enough to obtain a good approximation for complicated PFs (discontinuous, non-convex, etc.). Thus, we propose to dynamically adjust the weight vectors once GWASF-GA has been run for a certain number of generations. This adjustment is aimed at re-calculating some of the weight vectors, so that search directions pointing to overcrowded regions of the PF are redirected toward parts with a lack of solutions that may be hard to be approximated. We test different parameters settings of the dynamic adjustment in optimization problems with three, five, and six objectives, concluding that GWASF-GA performs better when adjusting the weight vectors dynamically than without applying the adjustment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Functional and Structural Studies on the \u3cem\u3eNeisseria gonorrhoeae\u3c/em\u3e GmhA, the First Enzyme in the \u3cem\u3eglycero-manno\u3c/em\u3e-heptose Biosynthesis Pathways, Demonstrate a Critical Role in Lipooligosaccharide Synthesis and Gonococcal Viability

    Get PDF
    Sedoheptulose-7-phosphate isomerase, GmhA, is the first enzyme in the biosynthesis of nucleotide-activated-glycero-manno-heptoses and an attractive, yet underexploited, target for development of broad-spectrum antibiotics. We demonstrated that GmhA homologs in Neisseria gonorrhoeae and N. meningitidis (hereafter called GmhAGC and GmhANM, respectively) were interchangeable proteins essential for lipooligosaccharide (LOS) synthesis, and their depletion had adverse effects on neisserial viability. In contrast, the Escherichia coli ortholog failed to complement GmhAGC depletion. Furthermore, we showed that GmhAGC is a cytoplasmic enzyme with induced expression at mid-logarithmic phase, upon iron deprivation and anaerobiosis, and conserved in contemporary gonococcal clinical isolates including the 2016 WHO reference strains. The untagged GmhAGCcrystallized as a tetramer in the closed conformation with four zinc ions in the active site, supporting that this is most likely the catalytically active conformation of the enzyme. Finally, site-directed mutagenesis studies showed that the active site residues E65 and H183 were important for LOS synthesis but not for GmhAGC function in bacterial viability. Our studies bring insights into the importance and mechanism of action of GmhA and may ultimately facilitate targeting the enzyme with small molecule inhibitors

    WNT5A gene and protein expression in endometrial cancer

    Get PDF
    Introduction. WNT5A (Wnt family member 5A) belongs to the WNT family of secreted signaling glycoproteins that play essential role in developmental, physiological and pathological processes. WNT5A was shown to take part in carcinogenesis process playing both oncogenic and suppressor functions in various types of human malignancies. This study aimed to assess the expression of the WNT5A gene at the mRNA and protein levels in the specimens derived from endometrial cancer (EC) or unchanged control endometrium. The associations between the WNT5A expression levels and clinicopathological characteristics and survival of EC patients were evaluated. Materials and methods. Total RNA was isolated in order to assess the relative amounts of WNT5A mRNA by quantitative polymerase chain reaction (QPCR) in samples of unchanged endometrial control (n = 8) and tumor samples of EC patients (n = 28). Immunohistochemistry (IHC) was used to determine the presence of WNT5A protein in the sections of formalin-fixed, paraffin-embedded tissue specimens derived from unchanged endome­trial controls (n = 6) and EC tumors (n = 19). Significance of differences in WNT5A expression levels between the studied groups of EC patients and correlations between the WNT5A and demographic data, pathological features, hematological parameters and overall survival of the patients were evaluated by statistical analysis. Results. The level of WNT5A mRNA was decreased in EC in comparison to unchanged endometrium. WNT5A expression was associated with primary tumor invasion status exhibiting reduced level of transcripts in EC that involved organs beyond the uterus when compared to the uterus-confined cancers. WNT5A immunoreactivity was visualized in the cytoplasm and nuclei of EC cells as well as in the luminal and glandular epithelial cells of unchanged endometrium. WNT5A mRNA expression levels correlated negatively with cytoplasmic, and positively with nuclear immunoreactivity of the WNT5A protein in the EC cells. In addition, the relationships between blood leucocyte count (in particular granulocytes and lymphocytes) of patients with EC and their WNT5A mRNA and protein expression levels were established. A positive correlation between the nuclear immunoexpression of WNT5A protein in the cancer cells in cell nuclei and mean platelet volume in blood was also found. Conclusions. The results of the first study of WNT5A expression at the transcript and protein levels indicate that it could be considered as a potential marker of molecular changes that take place during EC development

    Immunohistochemical visualization of pro-inflammatory cytokines and enzymes in ovarian tumors

    Get PDF
    Epithelial ovarian cancer represents one of the most deadly gynaecological neoplasms in developed countries and is a highly heterogeneous disease. Epidemiological studies show that anti-inflammatory drugs reduce the incidence and mortality of several types of cancer, indicating the potential role of pro-inflammatory factors in carcinogenesis. The expression of pro-inflammatory factors in various cancer types, including ovarian cancer, was assessed in many studies, yielding in consistent results, often due to the histological heterogeneity of various cancers. The aim of the study was to investigate the expression of IL-1, IL-6, TGF-β, TNF-α, COX-2,iNOS, and NF-kB in serous and mucinous ovarian cancers. Ninety cases of ovarian tumors classified into mucous and serous type (45 patients in each group) were selected. Each group was classified into subgroups according to the three stages of tumor differentiation, i.e. into (i) benign, (ii) borderline and (iii) malignant tumors. The presence of proteins of interest in paraffin sections was analysed by immunohistochemistry. The expression of most of the studied factors depended on the histological tumor subtype and the degree of malignancy. Expression of NF-κB appears to be related to the level of the neoplastic differentiation only in the group of serous tumors, while the presence of IL-6 in the mucinous tumor subtype was observed only in the case of benign lesions. Expression of IL-1, TNF-α and COX-2 increased with the stage of the disease in both serous and mucinous tumors. The highest level of TGF-β expression was observed in serous borderline tumors. The different levels of iNOS immunoreactivity between the groups of serous and mucinous tumors were observed only in borderline tumors. The results of our study may be helpful in designing therapeutic strategies depending on the type of ovarian cancer

    Structural and Functional Insights Into the Role of BamD and BamE Within the \u3cem\u3eβ\u3c/em\u3e-Barrel Assembly Machinery in \u3cem\u3eNeisseria gonorrhoeae\u3c/em\u3e

    Get PDF
    The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae. The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface–displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance

    The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS’s superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of the mechanical structure and interfaces

    Effect of zinc nanoparticles on embryo and chicken growth, and the content of zinc in tissues and faeces

    Get PDF
    The hypothesis was that owing to their high bioavailability, zinc oxide nanoparticles (NanoZnO) can effectively replace (Zn) salts and reduce Zn excretion with faeces. The objective of this study was to investigate the effects of NanoZnO on the development of chicken embryos, the growth of broiler chickens, and Zn excretion with faeces. At day 1 of incubation, 120 eggs were randomly divided between a control group (not injected) and groups injected with a hydrocolloid of NanoZnO in increasing concentrations (50, 100, 500 mg/L). At day 19 of incubation, no differences were observed in the bodyweight, but 100 and 500 mg/L affected liver and heart weights, indicating that high levels of NanoZnO may induce differential organ development. In the subsequent experiment, 308 chickens were randomly divided into six groups. The control diet was supplemented with 55 mg Zn/kg (standard level), the 0 group received no Zn supplement, and groups fed NanoZnO received 25%, 50%, 75%, and 100% of the standard level. The 100% replacement of ZnO with NanoZnO increased the chickens’ bodyweight compared with the standard level of ZnO, but to the same level as the diet without ZnO supplementation. Furthermore, NanoZnO did not reduce the content of Zn in faeces, which was only significantly lower in the group without ZnO supplementation in comparison with other groups. The results indicate that the replacement of ZnO with NanoZnO had no negative effects on chicken growth. Compared with ZnO, NanoZnO did not reduce Zn excretion with faeces. Keywords: broiler, development, excretion, mineral, nanonutritio

    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells

    Get PDF
    Introduction. The extremely-low frequency electromagnetic field (ELFEMF) has been proposed for use in cancer therapy since it was found that magnetic waves interfere with many biological processes. Gold nanoparticles (Au-NPs) have been widely used for drug delivery during cancer in vitro studies due to their low cytotoxity and high biocompatibility. The electroporation of cancer cells in a presence of Au-NPs (EP Au-NPs) can induce cell apoptosis, alterations of cell cycle profile and morphological changes. The impact of ELFEMF and EP Au-NPs on morphology, cell cycle and activation of apoptosis-associated genes on Hep-2 laryngeal cancer cell line has not been studied yet. Materials and methods. ELFEMF on Hep-2 cells were carried out using four different conditions: 25/50 mT at 15/30 min, while Au-NPs were used as direct contact (DC) or with electroporation (EP, 10 pulses at 200V, equal time intervals of 4 sec). MTT assay was used to check the toxicity of DC Au-NPs. Expression of CASP3, P53, BAX and BCL2 genes was quantified using qPCR. Cell cycle was analyzed by flow cytometry. Hematoxylin and eosin (HE) staining was used to observe cell morphology. Results. Calculated IC50 of DC Au-NPs 24.36 μM (4.79 μg/ml) and such concentration was used for further DC and EP AuNPs experiments. The up-regulation of pro-apoptotic genes (CASP3, P53, BAX) and decreased expression of BCL2, respectively, was observed for all analyzed conditions with the highest differences for EP AuNPs and ELFEMF 50 mT/30 min in comparison to control cells. The highest content of cells arrested in G2/M phase was observed in ELFEMF-treated cells for 30 min both at 25 or 50 mT, while the cells treated with EP AuNPs or ELFEMF 50 mT/15 min showed highest ratios of apoptotic cells. HE staining of electroporated cells and cells exposed to ELFEMF’s low and higher frequencies for different times showed nuclear pleomorphic cells. Numerous apoptotic bodies were observed in the irregular cell membrane of neoplastic and necrotic cells with mixed euchromatin and heterochromatin. Conclusions. Our observations indicate that treatment of Hep-2 laryngeal cancer cells with ELFEMF for 30 min at 25–50 mT and EP Au-NPs can cause cell damage inducing apoptosis and cell cycle arrest

    Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation

    Get PDF
    AIM: To investigate large tumor suppressor 1 (LATS1) expression, promoter hypermethylation, and microsatellite instability in colorectal cancer (CRC). METHODS: RNA was isolated from tumor tissue of 142 CRC patients and 40 colon mucosal biopsies of healthy controls. After reverse transcription, quantitative polymerase chain reaction (PCR) was performed, and LATS1 expression was normalized to expression of the ACTB and RPL32 housekeeping genes. To analyze hypermethylation, genomic DNA was isolated from 44 tumor CRC biopsies, and methylation-specific PCR was performed. Microsatellite instability (MSI) status was checked with PCR using BAT26, BAT25, and BAT40 markers in the genomic DNA of 84 CRC patients, followed by denaturing gel electrophoresis. RESULTS: Decreased LATS1 expression was found in 127/142 (89.4%) CRC cases with the average ratio of the LATS1 level 10.33 ± 32.64 in CRC patients vs 32.85 ± 33.56 in healthy controls. The lowest expression was found in Dukes’ B stage tumors and G1 (well-differentiated) cells. Hypermethylation of the LATS1 promoter was present in 25/44 (57%) CRC cases analyzed. LATS1 promoter hypermethylation was strongly associated with decreased gene expression; methylated cases showed 162× lower expression of LATS1 than unmethylated cases. Although high-grade MSI (mutation in all three markers) was found in 14/84 (17%) cases and low-grade MSI (mutation in 1-2 markers) was found in 30/84 (36%) cases, we found no association with LATS1 expression. CONCLUSION: Decreased expression of LATS1 in CRC was associated with promoter hypermethylation, but not MSI status. Such reduced expression may promote progression of CRC
    corecore