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Abstract. The convergence and the diversity of the decomposition-
based evolutionary algorithm Global WASF-GA (GWASF-GA) relies on
a set of weight vectors that determine the search directions in the ob-
jective space for new non-dominated solutions. Although using weight
vectors whose search directions are widely distributed may lead to a
well-diversified approximation of the Pareto front (PF), this fact may
not perform as expected for complicated PFs (discontinuous, not con-
vex, etc.). To handle this, we propose an adjustment of the weight vec-
tors once GWASF-GA has been run for certain number of generations.
This dynamic adjustment is aimed at re-calculating some of the weight
vectors, so that search directions pointing to overcrowded regions of the
PF are redirected toward parts with a lack of solutions that may be hard
to be approximated. We test different parameters settings of this dy-
namic adjustment in optimization problems with three, five, and six ob-
jectives. We conclude that GWASF-GA performs better when adjusting
the weight vectors dynamically than without applying the adjustment.
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we say that y dominates ȳ if yi ≤ ȳi for all i = 1, . . . ,m, with, at least, one
strict inequality. Then, a solution x ∈ S is Pareto optimal if there does not exist
another x̄ ∈ S so that f(x̄) dominates f(x). All Pareto optimal solutions form
the Pareto optimal set (PS) in the decision space and the Pareto optimal front
(PF) in the objective space.

Evolutionary multiobjective optimization (EMO) has been proven to be a
good methodology to solve multiobjective optimization problems [1]. EMO algo-
rithms start from an initial population of solutions (or individuals) and, based on
an iterative evolutionary process, produce an approximation of the PF. Among
all of them, decomposition-based EMO algorithms scalarize the original multiob-
jective optimization problem into a set of single objective optimization problems.
GWASF-GA [6] is one of these algorithms, in which an achievement scalarizing
function (ASF) [7] based on the Tchebychev distance is used as fitness func-
tion to classify the individuals into different fronts. For this classification, two
reference points are simultaneously considered in the ASF: the nadir and the
utopian points. The nadir point, denoted as znad = (znad

1 , . . . , znad
k )T , is defined

by the worst possible objective function values, that is, znad
i = maxx∈E fi(x)

(i = 1, . . . , k). To calculate the utopian point, referred to as z?? = (z??1 , . . . , z??k )T ,
we need the ideal point z? = (z?1 , . . . , z

?
k)T , defined as z?i = minx∈E fi(x) =

minx∈S fi(x) (i = 1, . . . , k). Thus, the components of the utopian point are ob-
tained as z??i = z?i − εi (i = 1, . . . , k), where εi > 0 is a relatively small real
value. At each generation of GWASF-GA, individuals are classified according to
their ASF values calculated using both the nadir and the utopian points, but
also depending on a set of weight vectors. Due to the mathematical properties
of the ASF [7], the weight vectors determine the search directions for new non-
dominated solutions towards the PF. Because of this, the weight vectors should
preferably define uniformly distributed search directions in the objective space.

Promising results have been provided by GWASF-GA [6]. However, in cases
where the PF is discontinuous or has a complex shape, GWASF-GA may not be
able to generate a good approximation of the PF, for instance, if different weight
vectors are generating similar solutions. This means that different weight vectors
may be directing the search towards the same region of the PF. To amend this,
we propose to improve the performance of GWASF-GA by dynamically adjusting
the weight vectors. The idea is to re-direct some of the search directions, taken
into account the current distribution of the solutions obtained, so that weight
vectors generating solutions in overcrowded areas of the PF are replaced by new
ones directing the search towards regions of the PF with lack of solutions. Since
this improvement depends on different parameters, we carry out an experimental
study to gain knowledge about their impact on the performance of GWASF-GA
when solving different multiobjective optimization test problems.

Next, Section 2 motivates the weigh vectors’ adjustment to improve the per-
formance of GWASF-GA. In Section 3, we describe our proposal in details.
Section 4 presents and discusses the experiments designed to study the bene-
fits of adjusting the weight vectors and, finally, Section 5 concludes this work.
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2 Motivation

Minimizing the ASF proposed in [7] over the feasible set means, in practice, to
project the reference point used onto the PF in the projection direction given by
the inverse components of the weight vector. Owing to this, the weight vectors are
key parameters in GWASF-GA since they set the search directions for new non-
dominated solutions, either from the nadir or from the utopian point. Thus, they
affect the diversity and the convergence of GWASF-GA and, according to [6],
the weight vectors used must define projection directions as evenly distributed as
possible. Besides, since the front classification is based on the ASF values, each
individual in the population produced at each generation is associated either
with the nadir or with the utopian point, and with a weight vector.

In practice, a set of weight vectors producing uniformly spread projection
directions of the nadir or of the utopian point allows a well-diversified population
to be obtained just in case the PF is not complex, such as e.g. an hyper-plane
(Figure 1 (a)). In case the PF is discontinuous (Figure 1 (b)), the same weight
vectors may be generating very similar (i.e. very close) non-dominated solutions,
because their projection directions may be pointing towards the same area of
the PF, or may be even directing the search for new solutions towards gaps in
the PF. This fact does not contribute to the convergence of the algorithm and
produces a lack of the diversity among the solutions generated.
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Fig. 1. Projection directions from znad and z?? in GWASF-GA.

According to this, to improve the quality (convergence and diversity) of the
approximation generated by GWASF-GA, we suggest to re-calculate some of the
weight vectors once GWASF-GA has converged to some extent. The new weight
vectors generated should be able to fit to the features of the PF, such as e.g.
discontinuities, convexity, etc. To achieve this, one possibility is to re-distribute
the weight vectors according to the solutions in the current population. These
individuals have survived along the generations and, therefore, are assumed to
be the best individuals found so far to approximate the PF.
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After performing a number of generations, we suggest to re-orientate the
search for new individuals in GWASF-GA as shown in Figure 1 (c). According
to the distribution of the solutions in the current population, our proposal is to
dynamically replace the weight vectors whose projection directions point towards
overcrowded parts (where there are more solutions), by weight vectors helping to
approximate regions that are not so well-covered. With this, we try to diversify
the solutions generated, helping the algorithm to converge towards regions where
the density of solutions is not very high at the moment and that may be hard
to be approximated. The convexity of the PF is also considered somehow when
adjusting the weight vectors, since more importance is likely to be given to the
use of the utopian point if the PF is concave, or of the nadir point if it is convex.

3 Improvement of GWASF-GA through a Dynamic
Adjustment of the Weight Vectors

Next, we describe how to enhance the convergence and diversity of the final
population generated by GWASF-GA. Let GT denote the total number of gen-
erations to be performed. Initially, a representative set W of weight vectors in
[0, 1]k is considered. They are generated as suggested in [6] (pp. 321-323) so that
the projection directions they define towards the PF are evenly distributed. Let
us refer to the number of weight vectors in W as Nµ.

3.1 Initial Approximation Using the Original GWASF-GA

Initially, the original GWASF-GA [6] is run as usual for a certain number of
generations. Let Gp be the number of generations performed so. We assume that
Gp is defined as a percentage p (0 < p ≤ 1) of the total number of generations,
i.e. Gp = p ·GT . Thus, to classify the individuals into different fronts according
to their ASF values until generation Gp, a half of the Nµ weight vectors is used
with the utopian point and the other half is associated with the nadir point. The
individuals with the lowest ASF values for the nadir and for the utopian points,
using each of their weight vectors, are selected in the first front; the individuals
with the next lowest ASF values form the second front, and so on.

The purpose of executing these Gp generations is to let GWASF-GA produces
an initial approximation of the PF. The solutions obtained at the generation Gp
may have not converged closely enough to the PF, but their distribution gives us
an initial insight of the true PF. Besides, regions of the PF that are complicated
to converge to may still have not been well-covered at this generation. Thus, Gp
cannot be too small in order not to stop GWASF-GA too prematurely, neither
too large so that there is still room to improve the search directions for new
solutions.

3.2 Dynamic Weight Vectors’ Adjustment

The adjustment of the weight vectors is aimed at re-orientating some of the pro-
jection directions, so that the search directions pointing to overcrowded regions
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are re-directed towards parts of the PF with a lack of solutions. To this aim,
as previously explained, useful information about the shape of the PF can be
extracted from the distribution of the solutions generated so far.

Let Na be the number of weight vectors to be re-adapted (Na < Nµ/2) and
Ga = (1 − p) · GT the number of generations that are left for the dynamical
adjustment (i.e. Gp + Ga = GT ). In the next Ga generations, we perform na
adjustments of the weight vectors (with na ∈ {1, . . . , Ga}). This implies that
the weight vectors are re-distributed each E(Ga/na) generations, starting at
generation Gp (where E(·) denotes the integer part of a number). That is, if Gra
denotes the generation at which the r-th adjustment is done (r = 1, . . . , na), we
have Gra = Gp + (r− 1) ·E(Ga/na). Note that the r-th adjustment of the weight
vectors is done as explained hereafter once the generation Gra has concluded and
before running the generation Gra + 1. For each r = 1, . . . , na, let P ra denote the
population generated at generation Gra and W r

a the new set of weight vectors
obtained at the r-th adjustment. Next, we describe the procedure to identify the
weight vectors to be re-calculated and how to re-distribute them.

Firstly, at the r-th adjustment, we initialize W r
a = W r−1

a (with W 1
a = W ).

To detect what regions of the PF are well-covered and what are not (according
to the current population P ra ), we need a measurement of the diversity around
each individual (in the objective space). For this, we define the scattering level
of each x ∈ P ra , and denote it by s(x), as follows:

s(x) =
∏k
j=1 L2(f(x), f(xj)), (2)

where x1, . . . ,xk ∈ P ra are the k solutions with the closest objective vectors to
f(x) regarding the L2-distance. The objective vectors are assumed to be nor-
malized to avoid scale problems. The higher (respectively, the lower) s(x) is, the
less (respectively, the more) crowded is the region where f(x) lyes. Thus, we can
identify areas of the PF that are poorly approximated (with a lack of solutions)
by means of the solutions with the highest scattering level, and overcrowded
regions as these containing the solutions with the lowest scattering level.

Secondly, the Na solutions in P ra with the lowest scattering level are selected,
and we denoted them by {x̄1, . . . , x̄Na}. So as, it can be understood that there
are close enough individuals of P ra around each x̄j in the objective space (j =
1, . . . , Na), meaning that the area of the PF where f(x) lyes has been covered
enough at generation Gra in comparison to other regions. As previously said, each
solution in GWASF-GA is associated with a weight vector, as well as with the
nadir or with the utopian point. Then, we can consider that the weight vector
corresponding to each x̄j is directing the search towards an overcrowded area of
the PF, where other weight vectors are also orientating the search towards (those
of the solutions around x̄j). In view of this, the Na weight vectors corresponding
to the solutions {x̄1, . . . , x̄Na} are the candidates to be replaced by new ones
pointing towards the least crowded areas (according to P ra ). Thus, they are
removed from the set W r

a , in which only Nµ −Na weight vectors are left.
Thirdly, to generate the new Na weight vectors, we identify the Na solutions

in P ra with the highest scattering level, referred to as {x̂1, . . . , x̂Na}. The objec-
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tive vectors of these solutions enable the search to be focused on parts that have
not been well-approximated by the population P ra , since the new weight vectors
µj = (µj1, . . . , µ

j
k) (j = 1, . . . , Na) to be introduced into W r

a are calculated as:

Case (a): If the solution x̂j has been obtained in the front classification process
as one minimizing the ASF with the utopian point z??, then:

µji = 1
fi(x̂j)−z??i

for each i = 1, . . . , k. (3)

Case (b): In case x̂j has been selected in the front classification process as one
minimizing the ASF with the nadir point znad, then:

µji = 1
znadi −fi(x̂j)

for each i = 1, . . . , k. (4)

Once all the new weight vectors are incorporated to W r
a , GWASF-GA is run

as usual using W r
a as the set of weight vectors, until the next weight vectors’

adjustment needs to be carried out at generation Gr+1
a . Note that, to classify the

individuals into different fronts, each new µj is considered to select individuals
with the lowest ASF values either with the utopian point (case (a)) or with the
nadir point (case (b)), depending on the way it has been calculated.

According to (3) and (4), each individual x̂j (lying in a not-well approximated
region) is used to calculate a new weight vector µj , taking into account whether
this solution has been elicited in GWASF-GA using the utopian or the nadir
point. When using the utopian point (case (a)), µj determines a projection
direction towards the PF which directly points to f(x̂j) from z??. But if the
nadir point has been employed (case (b)), the projection direction set by µj is
orientated to f(x̂j) from znad. In this way, the region of the PF where each f(x̂j)
lies may be better covered in subsequent generations than before, since a new
weight vector is directing the search directly towards it, from the utopian or
from the nadir point, assuring that the best one of them is used.

Observe that, after the first adjustment, the number of weight vectors used
in the ASF for the utopian point is no longer equal to that for the nadir point,
so as in the original GWASF-GA. In case the PF is convex, it is likely that the
process automatically assigns a larger amount of weight vectors to the nadir
point, giving more importance to the projection from it. But if it is concave,
more new weight vectors may be likely to be associated with the utopian point,
meaning that its projection is more suitable.

4 Experimental Study

The adjustment of the weight vectors in GWASF-GA depends on three param-
eters: the number of dynamic adjustments to be performed (na), the percentage
of generations that GWASF-GA is run before the first adjustment is applied (p),
and the number of weight vectors to be adjusted (Na). In this section, we test
different settings of these parameters in order to gain knowledge about the im-
provement performance of GWASF-GA achieved using different configurations.
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4.1 Experimental Design

A total of 46 test problems are used: 18 with three objectives (DTLZ1-DTLZ4
and DTLZ7 [2], WFG1-9 [3], UF8-10 [9], and LZ09 [4]) and 14 with five and six
objectives, respectively (DTLZ1-DTLZ4 and DTLZ7 [2] and WFG1-9 [3]). We
set the number of decision variables to k+4 for DTLZ1, k+9 for DTLZ2-DTLZ4,
and k + 19 for DTLZ7 (k is the number of objectives). For the WFG problems,
the position- and distance-related parameters are k − 1 and 10, respectively.

In our analysis, we use a fractional factorial design to investigate the impact
of na, p, and Na on the performance of GWASF-GA. We analyze the approxima-
tions generated by GWASF-GA when the weight vectors are adjusted using all
possible combinations of the following values: na ∈ {2, 4, 6}, p ∈ {0.6, 0.7, 0.8},
and Na ∈ {5, 20, 25, 30, 50, 60, 75, 100}.1 Thus, we study 72 different configura-
tions to dynamically adjust the weight vectors and we compare their performance
against the original GWASF-GA (i.e. without weight vectors’ adjustment).

For each algorithm (meaning each version of GWASF-GA with each possible
dynamic adjustment configuration, in addition to the original GWASF-GA), 30
independent runs are executed for each test problem, which implies more than
100,000 runs (30 × (72 + 1) × (18 + 14 + 14)). In all cases, we use the same
evolutionary parameters: 300 individuals (i.e. Nµ = 300 weight vectors), 3,000
generations, the SBX crossover operator with a distribution index ηc = 20 and a
probability Pc = 0.9, and the polynomial mutation operator with a distribution
index ηm = 20 and a probability Pm = 1/n, where n is the number of variables.

To run the experiments, we use the implementations of GWASF-GA and of
the test problems available in jMetal [5], an object-oriented Java-based frame-
work for multiobjective optimization using metaheuristics. We conduct our ex-
periments in a cluster of 21 computers offering a total of 172 cores and 190
GB of memory. The cluster is managed by HTCondor, a specialized workload
management system for compute-intensive jobs.2 We use HTCondor because it
provides a job queuing mechanism, scheduling policy, and resource management
that allow users to submit parallel jobs to HTCondor.

4.2 Data Analysis

The hypervolume indicator [10] has been used as performance metric, being
able to measure both convergence and diversity of the solutions generated in the
objective space. To compute the hypervolume, a representative set of the PF is
required. For the DTLZ and WFG problems, we generate it using an open-source
tool.3 For the rest of problems, we use the representative sets available in jMetal.

Given that we carry out 30 independent runs of each algorithm, we apply a
Wilcoxon rank-sum test [8] to check if the hypervolume achieved by the original
GWASF-GA is significantly different to that of its version adjusting the weight

1 These values reported the best results after performing several initial tests. The
results are not included due to space limitations and are available upon request.

2 https://research.cs.wisc.edu/htcondor/index.html
3 https://github.com/rsain/Pareto-fronts-generation
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vectors and using each one of the configurations considered. For each problem,
the null hypothesis is that the distribution of their hypervolume average values
in the 30 runs differ by a location shift of α. Thus, we consider the difference
to be significant if the obtained p-value is lower than α = 0.05. To compute the
Wilcoxon rank-sum test, we use the wilcox.test function from the R software.4

4.3 Results

Table 2 reports the number of problems where each version of GWASF-GA with
the weight vectors’ adjustment performs significantly better than (N) and worse
than (O) the original GWASF-GA. Note that the amount of problems in which
the performance did not significantly differ can be known using the total number
of problems. The column ‘Configuration’ shows the values of the parameters na,
p, and Na. The second, third, and fourth columns show the results obtained for
the three-, five-, and six-objective problems, respectively (k = 3, 5, 6). In these
columns, we highlight in gray color the configurations of the weight vectors’ ad-
justment that perform better than the original algorithm in the highest number
of cases, reaching an equal performance for the rest of them at the same time.

We can see that the hypervolume achieved by GWASF-GA is higher when
using the weight vectors’ adjustment, on average, in 15/18 (81%), 11/14 (76%),
and 10/14 (74%) of the cases, respectively, for three, five, and six objectives.
In addition, for each group of problems, there always exists, at least, one con-
figuration (or more) that never performs worse than the original GWASF-GA.
Therefore, we can conclude that adjusting the weight vectors enables the out-
come of GWASF-GA to be enhanced, although we must say that there is no
unique configuration reporting the best results for all the cases.

5 Conclusion

In this paper, we have proposed an improvement of the decomposition-based
EMO algorithm GWASF-GA. This algorithm uses weight vectors to classify
the individuals into several fronts, which determine the search directions for
new non-dominated solutions. Thus, we have suggested to perform a dynamic
adjustment of the weight vectors to enhance its convergence and diversity. Based
on the population generated, we identify regions of the PF that are overcrowded
and others that have been poorly approximated. Thus, some weight vectors are
replaced so that search directions pointing to overcrowded regions are re-directed
towards parts with a lack of solutions that may be hard to be approximated.

The performance of our proposal depends on several parameters, such as the
number of weigh vectors to be replaced, the generation at which the first ad-
justment is carried out, and the times the weight vectors are adjusted. In the
numerical experiments, we have tested different configurations of these parame-
ters to solve three-, five-, and six-objective optimization problems. According to

4 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.

html
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Fig. 2. Number of problems with three, five and six objectives (k = 3, 5, 6) where each
version of GWASF-GA with the weight vectors’ adjustment performs better than (N)
and worse than (O) the original GWASF-GA, for the hypervolume in the 30 indepen-
dent runs.
Configuration k = 3 k = 5 k = 6

18 prob. 14 prob. 14 prob.
na p Na N O N O N O
2 0.6 5 13 2 10 2 9 3
2 0.6 20 16 0 13 0 11 3
2 0.6 25 16 0 13 0 10 3
2 0.6 30 16 0 12 0 11 0
2 0.6 50 16 0 12 0 10 2
2 0.6 60 16 0 12 0 11 2
2 0.6 75 16 0 9 0 11 3
2 0.6 100 12 2 8 4 11 2
2 0.7 5 14 1 8 2 9 3
2 0.7 20 16 0 12 0 10 3
2 0.7 25 16 0 13 0 10 3
2 0.7 30 17 0 13 0 11 3
2 0.7 50 16 0 12 0 11 3
2 0.7 60 16 0 11 0 10 2
2 0.7 75 15 0 10 1 10 2
2 0.7 100 12 1 8 4 12 2
2 0.8 5 13 0 10 1 9 3
2 0.8 20 16 0 13 0 10 3
2 0.8 25 17 0 13 0 11 3
2 0.8 30 16 0 13 0 10 3
2 0.8 50 16 0 13 0 11 2
2 0.8 60 16 0 12 0 11 2
2 0.8 75 16 0 10 0 11 2
2 0.8 100 12 3 8 4 10 3
4 0.6 5 14 2 11 2 10 3
4 0.6 20 16 0 13 0 11 3
4 0.6 25 16 0 13 0 11 3
4 0.6 30 16 0 13 0 11 3
4 0.6 50 16 0 13 0 11 2
4 0.6 60 16 0 13 0 11 2
4 0.6 75 15 0 11 1 11 1
4 0.6 100 12 2 7 4 12 1
4 0.7 5 15 1 9 1 10 3
4 0.7 20 16 0 13 0 10 2
4 0.7 25 17 0 13 0 11 2
4 0.7 30 16 0 13 0 12 2
4 0.7 50 16 0 13 0 10 2
4 0.7 60 16 0 12 0 11 2
4 0.7 75 15 0 10 0 12 2
4 0.7 100 12 2 7 4 12 1
4 0.8 5 15 1 12 2 10 3
4 0.8 20 16 0 13 0 10 3
4 0.8 25 17 0 13 0 12 2
4 0.8 30 16 0 13 0 12 2
4 0.8 50 17 0 13 0 12 2
4 0.8 60 16 0 13 0 11 2
4 0.8 75 17 0 10 0 4 11
4 0.8 100 12 2 7 4 11 1

Configuration k = 3 k = 5 k = 6
18 prob. 14 prob. 14 prob.

na p Na N O N O N O
6 0.6 5 14 1 11 1 11 3
6 0.6 20 17 0 13 0 10 2
6 0.6 25 16 0 13 0 12 2
6 0.6 30 16 0 13 0 11 2
6 0.6 50 16 0 13 0 11 1
6 0.6 60 16 0 13 0 12 1
6 0.6 75 16 0 10 0 13 1
6 0.6 100 13 3 7 5 11 1
6 0.7 5 15 2 9 1 10 3
6 0.7 20 16 0 13 0 12 2
6 0.7 25 16 0 13 0 12 2
6 0.7 30 17 0 13 0 12 2
6 0.7 50 16 0 13 0 12 1
6 0.7 60 16 0 13 0 12 1
6 0.7 75 16 0 11 0 13 1
6 0.7 100 12 3 8 5 11 1
6 0.8 5 15 1 11 0 11 3
6 0.8 20 16 0 13 0 11 2
6 0.8 25 16 0 13 0 12 2
6 0.8 30 16 0 13 0 11 2
6 0.8 50 16 0 13 0 12 1
6 0.8 60 16 0 13 0 13 1
6 0.8 75 16 0 11 1 12 0
6 0.8 100 12 3 7 4 12 1



10 S. González-Gallardo et al.

the hypervolume, we have concluded that better results are provided when the
weight vectors’ adjustment is incorporated into GWASF-GA, in comparison to
the outcome generated by the original algorithm. As future research, we plan to
analyze the performance of our proposal as compared to other EMO algorithms.
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