750 research outputs found

    Electron interferometry with nano-gratings

    Get PDF
    We present an electron interferometer based on near-field diffraction from two nanostructure gratings. Lau fringes are observed with an imaging detector, and revivals in the fringe visibility occur as the separation between gratings is increased from 0 to 3 mm. This verifies that electron beams diffracted by nanostructures remain coherent after propagating farther than the Talbot length zT=2d2/λz_T = 2d^2/\lambda = 1.2 mm, and hence is a proof of principle for the function of a Talbot-Lau interferometer for electrons. Distorted fringes due to a phase object demonstrates an application for this new type of electron interferometer.Comment: 4 pgs, 6 figure

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    Multi-trait mimicry of ants by a parasitoid wasp

    Get PDF
    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized

    How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs

    Full text link
    [EN] Phenaccocus peruvianus Granara de Willink (Hemiptera: pseudococcidae) is an invasive mealybug that has become a pest of ornamental plants in Europe and has recently been detected in California, USA. In this work, we studied the tritrophic interaction among this mealybug, its main parasitoid Acerophagus n. sp. near coccois (Hymenoptera: Encyrtidae) and tending ants to disclose the success of this parasitoid controlling P. peruvianus. Acerophagus n. sp. near coccois accepted mealybugs for parasitism regardless of their size but did not hostfeed. We recorded three active defenses of P. peruvianus. Host handling time-consuming process that required more than 30 min. Tending ants, Lasius grandis (Hymenoptera: Encyrtidae), reduced the time spent by parasitoids in a patch and disrupted oviposition attempts. The low numbers of ants tending mealybugs colonies in Spain and France could explain why this parasitoid, with a long handling time, is an efficient biological control agent for P. peruvianus.Beltrà Ivars, A.; Soto Sánchez, AI.; Tena Barreda, A. (2015). How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs. BioControl. 60(4):473-484. https://doi.org/10.1007/s10526-015-9663-6S473484604Arakelian G (2013) Bougainvillea mealybug (Phenacoccus peruvianus). Factsheet 2013. County of Los Angeles. Department of agricultural commissioner/weights and measures, USABartlett BR (1961) The influence of ants upon parasites, predators, and scale insects. Ann Entomol Soc Am 54:543–551Bartlett BR (1978) Pseudococcidae. In: Clausen CP (ed) Introduced parasites and predators of arthropod pests and weeds: a world review, 1st edn. Agricultural Research Service USDA, Washington, USA, pp 137–170Barzman MS, Daane KM (2001) Host-handling behaviors in parasitoids of black scale, Saissetia oleae (Homoptera: Coccidae): a case for ant-mediated evolution. J Anim Ecol 70:237–247Beltrà A, Soto A, Germain JF, Matile-Ferrero D, Mazzeo G, Pellizzari G, Russo A, Franco JC, Williams DJ (2010) The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from South America to Europe. Entomol Hell 19:137–143Beltrà A, Garcia-Marí F, Soto A (2013a) Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae). J Econ Entomol 106:1486–1494Beltrà A, Tena A, Soto A (2013b) Fortuitous biological control of the invasive mealybug Phenacoccus peruvianus in Southern Europe. BioControl 58:309–317Beltrà A, Tena A, Soto A (2013c) Reproductive strategies and food sources used by Acerophagus n. sp. near coccois, a new successful parasitoid of the invasive mealybug Phenacoccus peruvianus. J Pest Sci 86:253–259Berlinger MJ, Golberg AM (1978) The effect of the fruit sepals on the citrus mealybug population and on its parasite. Entomol Exp Appl 24:238–243Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinauer Associates Inc., Sunderland, UKBoavida C, Ahounou M, Vos M, Neuenschwander P, van Alphen JJM (1995) Host stage selection and sex allocation by Gyranusoidea tebygi (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:487–496Bokonon-Ganta AH, Neuenschwander P, van Alphen JJM, Vos M (1995) Host stage selection and sex allocation by Anagyrus mangicola (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:479–486Bugila AAA, Franco JC, Borges da Silva E, Branco M (2014a) Defense response of native and alien mealybugs (Hemiptera: Pseudococcidae) against the solitary parasitoid Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). J Insect Behav 27:439–453Bugila AAA, Branco M, Borges da Silva E, Franco JC (2014b) Host selection behavior and specificity of the solitary parasitoid of mealybugs Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera, Encyrtidae). Biocontrol Sci Techn 24:22–38Bynum EK (1937) Pseudococcobius terryi Fullaway, a Hawaiian parasite of Gray Sugarcane mealybug in the United States. J Econ Entomol 30:756–761Cadée N, van Alphen JJM (1997) Host selection and sex allocation in Leptomastidea abnormis, a parasitoid of the citrus mealybug Planococcus citri. Entomol Exp Appl 83:277–284Clausen CP (1924) The parasites of Pseudococcus maritimus (Ehrhorn) in California (Hymenoptera, Chalcidoidea). Part II. Biological studies and life histories. UC Pub Entomol 3:253–288Daane KM, Barzman MS, Caltagirone LE, Hagen KS (2000) Metaphycus anneckei and Metaphycus hageni: two discrete species parasitic on black scale, Saissetia oleae. BioControl 45:269–284Daane KM, Bentley WJ, Walton VM, Malakar-Kuenen R, Millar JC, Ingels CA, Weber EA, Gispert C (2006) New controls investigated for vine mealybug. Calif Agric 60:31–38Daane KM, Sime KR, Fallon J, Cooper ML (2007) Impacts of Argentine ants on mealybugs and their natural enemies in California’s coastal vineyards. Ecol Entomol 32:583–596De Farias AM, Hopper KR (1999) Oviposition behavior of Aphelinus asychis (Hymenoptera: Aphelinidae) and Aphidius matricariae (Hymenoptera: Aphidiidae) and defense behavior of their host Diuraphis noxia (Homoptera: Aphididae). Environ Entomol 28:858–862Dorn B, Mattiacci L, Bellotti AC, Dorn S (2001) Host specificity and comparative foraging behavior of Aenasius vexans and Acerophagus coccois, two endo-parasitoids of the cassava mealybug. Entomol Exp Appl 99:331–339Eisner T, Silberglied RE (1988) A chrysopid larva that cloaks itself in mealybug wax. Psyche 95:15–20Flanders SE (1963) Predation by parasitic Hymenoptera, the basis of ant-induced outbreaks of a host species. J Econ Entomol 56:116Foldi I (1983) Structure et fonctions des glandes tégumentaires de cochenilles Pseudococcines et de leurs secretions. Ann Soc Entomol Fr 19:155–156Foldi I (1997) Defense strategies in scale insects: phylogenetic inference and evolutionary scenarios (Hemiptera, Coccoidea). In: Grandcolas P (ed) The origin of biodiversity in insects: phylogenetic tests of evolutionary scenarios, 1st edn. Muséum National d’Histoire Naturelle, Paris, France, pp 203–230Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USAGonzález-Hernández H, Johnson MW, Reimer NJ (1999) Impact of Pheidole megacephala (F.) (Hymenoptera: Formicidae) on the biological control of Dysmicoccus brevipes (Cockerell) (Homoptera: Pseudococcidae). Biol Control 15:145–152Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273Gullan PJ (1997) Relationships with ants. In: Ben-Dov Y, Hodgson CJ (eds) Soft scale insects—their biology natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 351–373Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50Hcidari M, Jahan M (2000) A study of ovipositional behavior of Anagyrus pseudococci a parasitoid of mealybugs. J Agric Sci Technol 2:49–53Honda JY, Luck RF (1995) Scale morphology effects on feeding behavior and biological control potential of Rhyzobius lophanthae (Coleoptera: Coccinellidae). Ann Entomol Soc Am 88:441–450Joyce AL, Hoddle MS, Bellows TS, Gonzalez D (2001) Oviposition behavior of Coccidoxenoides peregrinus, a parasitoid of Planococcus ficus. Entomol Exp Appl 98:49–57Karamaouna F (1999) Biology of the parasitoids Leptomastix epona (Walker) and Pseudaphycus flavidulus (Brèthes) and behavioural interactions with the host mealybug Pseudococcus viburni (Signoret). Ph.D. Thesis, University of London, UK, p 333Karamaouna F, Copland MJ (2000) Oviposition behavior, influence of experience on host size selection, and niche overlap of the solitary Leptomastix epona and the gregarious Pseudaphycus flavidulus, two endoparasitoids of the mealybug Pseudococcus viburni. Entomol Exp Appl 97:301–308Klotz JH, Hansen L, Pospischil R, Rust M (2008) Urban ants of North America and Europe. Cornell University Press, Ithaca, USAMailleux AC, Deneubourg JL, Detrain C (2003) Regulation of ants foraging to resource productivity. P R Soc Lond B Bio 270:1609–1616Majerus ME, Sloggett JJ, Godeau JF, Hemptinne JL (2007) Interactions between ants and aphidophagous and coccidophagous ladybirds. Popul Ecol 49:15–27Mgocheki N, Addison P (2009) Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol Control 49:180–185Moore D (1988) Agents used for biological control of mealybugs (Pseudococcidae). Biocontrol News Inf 9:209–225Paris CI, Espadaler X (2009) Honeydew collection by the invasive garden ant Lasius neglectus versus the native ant L grandis. Arthropod Plant Interact 3:75–85Pekas A, Tena A, Aguilar A, Garcia-Marí F (2011) Spatio-temporal patterns and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus orchard. Agric Forest Entomol 13:89–97Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258Pijls JW, Hofker KD, Staalduinen MJ, van Alphen JJM (1995) Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A(E) diversicornis parasitoids of the cassava mealybug Phenacoccus manihoti. Ecol Entomol 20:326–332Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids—their biology, natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 299–313Sandanayaka WRM, Charles JG, Allan DJ (2009) Aspects of the reproductive biology of Pseudaphycus maculipennis (Hym: Encyrtidae), a parasitoid of obscure mealybug, Pseudococcus viburni (Hem: Pseudococcidae). Biol Control 48:30–35Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York, USASime KR, Daane KM (2014) Rapid, non-discriminatory oviposition behaviors are favored in mealybug parasitoids when Argentine ants are present. Environ Entomol 43:995–1002Tena A, Garcia-Marí F (2008) Suitability of citricola scale Coccus pseudomagnoliarum (Hemiptera: Coccidae) as host of Metaphycus helvolus (Hymenoptera: Encyrtidae): Influence of host size and encapsulation. Biol Control 46:341–347Tena A, Hoddle CD, Hoddle MS (2013) Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bull Entomol Res 103:714–723The R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriavan Driesche RG, Belloti A, Herrera CJ, Castello JA (1987a) Host preferences of two encyrtid parasitoids for the Columbian Phenacoccus spp. of cassava mealybugs. Entomol Exp Appl 43:261–266van Driesche RG, Belloti A, Herrera CJ, Castello JA (1987b) Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids Epidinocarsis diversicornis and Acerophagus coccois. Entomol Exp Appl 44:97–100Vet LE, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491Wajnberg E (1989) Analysis of variations of handling-time in Trichogramma maidis. Entomophaga 34:397–407Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661Wyckhuys KAG, Stone L, Desneux N, Hoelmer KA, Hopper KR, Heimpel GE (2008) Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance. Bull Entomol Res 98:361–370Zain-ul-Abdin, Arif MJ, Suhail A, Gogi MD, Arshad M, Wakil W, Abbas SK, Altaf A, Shaina H, Manzoor A (2012) Molecular analysis of the venom of mealybug parasitoid Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae). Pak Entomol 34:189–193Zinna G (1959) Specializzazione entomoparassitica negli Encyrtidae: studio morfologico etologico e fisiologico del Leptomastix dactylopii. Howard Boll Lab agr Filippo Silvestri 18:1–14

    Plant Species Loss Affects Life-History Traits of Aphids and Their Parasitoids

    Get PDF
    The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field. We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids, parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of consumers

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed
    corecore