704 research outputs found

    Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets

    Full text link
    Two centuries of research on phase transitions have repeatedly highlighted the importance of critical fluctuations that abound in the vicinity of a critical point. They are at the origin of scaling laws obeyed by thermodynamic observables close to second-order phase transitions resulting in the concept of universality classes, that is of paramount importance for the study of organizational principles of matter. Strikingly, in case such soft fluctuations are too abundant they may alter the nature of the phase transition profoundly; the system might evade the critical state altogether by undergoing a discontinuous first-order transition into the ordered phase. Fluctuation-induced first-order transitions have been discussed broadly and are germane for superconductors, liquid crystals, or phase transitions in the early universe, but clear experimental confirmations remain scarce. Our results from neutron scattering and thermodynamics on the model Dzyaloshinskii-Moriya (DM) helimagnet (HM) MnSi show that such a fluctuation-induced first-order transition is realized between its paramagnetic and HM state with remarkable agreement between experiment and a theory put forward by Brazovskii. While our study clarifies the nature of the HM phase transition in MnSi that has puzzled scientists for several decades, more importantly, our conclusions entirely based on symmetry arguments are also relevant for other DM-HMs with only weak cubic magnetic anisotropies. This is in particular noteworthy in light of a wide range of recent discoveries that show that DM helimagnetism is at the heart of problems such as topological magnetic order, multiferroics, and spintronics.Comment: 19 pages, 9 figures, 2 table

    Critical phenomena: 150 years since Cagniard de la Tour

    Full text link
    Critical phenomena were discovered by Cagniard de la Tour in 1822, who died 150 years ago. In order to mark this anniversary, the context and the early history of his discovery is reviewed. We then follow with a brief sketch of the history of critical phenomena, indicating the main lines of development until the present date. Os fen\'omenos cr\'{\i}ticos foram descobertos pelo Cagniard de la Tour em Paris em 1822. Para comemorar os 150 anos da sua morte, o contexto e a hist\'oria initial da sua descoberta \'e contada. Conseguimos com uma descri\c{c}\~ao breve da hist\'oria dos fen\'emenos cr\'{\i}ticos, indicando as linhas principais do desenvolvimento at\'e o presente.Comment: Latex2e, 8 pp, 3 eps figures include

    Bi-stable tunneling current through a molecular quantum dot

    Get PDF
    An exact solution is presented for tunneling through a negative-U d-fold degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy of the negative-U dot is larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a result of attractive electron correlations in the molecule, which open up a new conducting channel when the voltage is above the threshold bias voltage V2. Once this current has been established, the extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible realizations of the bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor corrections in the text. To appear in Phys. Rev.

    Selective functionalization of carbon nanotubes

    Get PDF
    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations

    Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields

    Get PDF
    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure

    Electron transport in nanotube--molecular wire hybrids

    Full text link
    We study contact effects on electron transport across a molecular wire sandwiched between two semi-infinite (carbon) nanotube leads as a model for nanoelectrodes. Employing the Landauer scattering matrix approach we find that the conductance is very sensitive to parameters such as the coupling strength and geometry of the contact. The conductance exhibits markedly different behavior in the two limiting scenarios of single contact and multiple contacts between the molecular wire and the nanotube interfacial atoms. In contrast to a single contact the multiple-contact configuration acts as a filter selecting single transport channels. It exhibits a scaling law for the conductance as a function of coupling strength and tube diameter. We also observe an unusual narrow-to-broad-to-narrow behavior of conductance resonances upon decreasing the coupling.Comment: 4 pages, figures include

    Driving current through single organic molecules

    Full text link
    We investigate electronic transport through two types of conjugated molecules. Mechanically controlled break-junctions are used to couple thiol endgroups of single molecules to two gold electrodes. Current-voltage characteristics (IVs) of the metal-molecule-metal system are observed. These IVs reproduce the spatial symmetry of the molecules with respect to the direction of current flow. We hereby unambigously detect an intrinsic property of the molecule, and are able to distinguish the influence of both the molecule and the contact to the metal electrodes on the transport properties of the compound system.Comment: 4 pages, 5 figure

    Determinants of environmental management in the red sea hotels: Personal and organizational values and contextual variables

    Get PDF
    What motivates firms to adopt environmental management practices is one of the most significant aspects in the contemporary academic debate in which the review of the existing literature yields, with an obvious contextual bias toward developed world, contested theories and inconclusive findings. Providing a unique model that brings together the individual and organizational levels of analysis on firms' adoption of environmental management practices, this study aims to provide a new insight from the context of developing world. Data from 158 Red Sea hotels reveal two identifiable dimensions of environmental management-planning and organization, and operations-that can be explained as originating from different values. Whereas organizational altruism is a powerful predictor of both dimensions, managers' personal values and organizational competitive orientation are only relevant to environmental operations. The evidence also indicates that contextual variables such as chain affiliation, hotel star rating, and size are important to explain hotels' environmental management behaviors. © 2012 ICHRIE

    Methods for selective functionalization and separation of carbon nanotubes

    Get PDF
    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations
    • …
    corecore