704 research outputs found
Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets
Two centuries of research on phase transitions have repeatedly highlighted
the importance of critical fluctuations that abound in the vicinity of a
critical point. They are at the origin of scaling laws obeyed by thermodynamic
observables close to second-order phase transitions resulting in the concept of
universality classes, that is of paramount importance for the study of
organizational principles of matter. Strikingly, in case such soft fluctuations
are too abundant they may alter the nature of the phase transition profoundly;
the system might evade the critical state altogether by undergoing a
discontinuous first-order transition into the ordered phase.
Fluctuation-induced first-order transitions have been discussed broadly and are
germane for superconductors, liquid crystals, or phase transitions in the early
universe, but clear experimental confirmations remain scarce. Our results from
neutron scattering and thermodynamics on the model Dzyaloshinskii-Moriya (DM)
helimagnet (HM) MnSi show that such a fluctuation-induced first-order
transition is realized between its paramagnetic and HM state with remarkable
agreement between experiment and a theory put forward by Brazovskii. While our
study clarifies the nature of the HM phase transition in MnSi that has puzzled
scientists for several decades, more importantly, our conclusions entirely
based on symmetry arguments are also relevant for other DM-HMs with only weak
cubic magnetic anisotropies. This is in particular noteworthy in light of a
wide range of recent discoveries that show that DM helimagnetism is at the
heart of problems such as topological magnetic order, multiferroics, and
spintronics.Comment: 19 pages, 9 figures, 2 table
Critical phenomena: 150 years since Cagniard de la Tour
Critical phenomena were discovered by Cagniard de la Tour in 1822, who died
150 years ago. In order to mark this anniversary, the context and the early
history of his discovery is reviewed. We then follow with a brief sketch of the
history of critical phenomena, indicating the main lines of development until
the present date.
Os fen\'omenos cr\'{\i}ticos foram descobertos pelo Cagniard de la Tour em
Paris em 1822. Para comemorar os 150 anos da sua morte, o contexto e a
hist\'oria initial da sua descoberta \'e contada. Conseguimos com uma
descri\c{c}\~ao breve da hist\'oria dos fen\'emenos cr\'{\i}ticos, indicando as
linhas principais do desenvolvimento at\'e o presente.Comment: Latex2e, 8 pp, 3 eps figures include
Bi-stable tunneling current through a molecular quantum dot
An exact solution is presented for tunneling through a negative-U d-fold
degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel
current exhibits hysteresis if the level degeneracy of the negative-U dot is
larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new
conducting channel when the voltage is above the threshold bias voltage V2.
Once this current has been established, the extra channel remains open as the
voltage is reduced down to the lower threshold voltage V1. Possible
realizations of the bi-stable molecular quantum dots are fullerenes, especially
C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current
hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor
corrections in the text. To appear in Phys. Rev.
Selective functionalization of carbon nanotubes
The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations
Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields
Using ultrahigh magnetic fields up to 170 T and polarized midinfrared
radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron
resonance in large-area graphene grown by chemical vapor deposition.
Circular-polarization dependent studies reveal strong p-type doping for
as-grown graphene, and the dependence of the cyclotron resonance on radiation
wavelength allows for a determination of the Fermi energy. Thermal annealing
shifts the Fermi energy to near the Dirac point, resulting in the simultaneous
appearance of hole and electron cyclotron resonance in the magnetic quantum
limit, even though the sample is still p-type, due to graphene's linear
dispersion and unique Landau level structure. These high-field studies
therefore allow for a clear identification of cyclotron resonance features in
large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure
Electron transport in nanotube--molecular wire hybrids
We study contact effects on electron transport across a molecular wire
sandwiched between two semi-infinite (carbon) nanotube leads as a model for
nanoelectrodes. Employing the Landauer scattering matrix approach we find that
the conductance is very sensitive to parameters such as the coupling strength
and geometry of the contact. The conductance exhibits markedly different
behavior in the two limiting scenarios of single contact and multiple contacts
between the molecular wire and the nanotube interfacial atoms. In contrast to a
single contact the multiple-contact configuration acts as a filter selecting
single transport channels. It exhibits a scaling law for the conductance as a
function of coupling strength and tube diameter. We also observe an unusual
narrow-to-broad-to-narrow behavior of conductance resonances upon decreasing
the coupling.Comment: 4 pages, figures include
Driving current through single organic molecules
We investigate electronic transport through two types of conjugated
molecules. Mechanically controlled break-junctions are used to couple thiol
endgroups of single molecules to two gold electrodes. Current-voltage
characteristics (IVs) of the metal-molecule-metal system are observed. These
IVs reproduce the spatial symmetry of the molecules with respect to the
direction of current flow. We hereby unambigously detect an intrinsic property
of the molecule, and are able to distinguish the influence of both the molecule
and the contact to the metal electrodes on the transport properties of the
compound system.Comment: 4 pages, 5 figure
Determinants of environmental management in the red sea hotels: Personal and organizational values and contextual variables
What motivates firms to adopt environmental management practices is one of the most significant aspects in the contemporary academic debate in which the review of the existing literature yields, with an obvious contextual bias toward developed world, contested theories and inconclusive findings. Providing a unique model that brings together the individual and organizational levels of analysis on firms' adoption of environmental management practices, this study aims to provide a new insight from the context of developing world. Data from 158 Red Sea hotels reveal two identifiable dimensions of environmental management-planning and organization, and operations-that can be explained as originating from different values. Whereas organizational altruism is a powerful predictor of both dimensions, managers' personal values and organizational competitive orientation are only relevant to environmental operations. The evidence also indicates that contextual variables such as chain affiliation, hotel star rating, and size are important to explain hotels' environmental management behaviors. © 2012 ICHRIE
Methods for selective functionalization and separation of carbon nanotubes
The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations
- …