46 research outputs found

    The effects of body exposure on self-body image and esthetic appreciation in anorexia nervosa.

    Get PDF
    Repeated exposures to thin-idealized body shapes may alter women's perceptions of what normal (e.g., accepted) and ideal (e.g., desired) bodies in a cultural environment look like. The aim of the present study was to investigate whether exposure to thin and round body shapes may change the subsequent esthetic appreciation of others' bodies and the perceptual and cognitive-affective dimensions of self-body image in patients suffering from anorexia nervosa (AN). Thirteen AN patients and 13 matched healthy controls were exposed to pictures of either thin or round unfamiliar body models and, before and after exposure, they were required to either express liking judgments about round and slim figures of unfamiliar bodies (esthetic task) or to adjust distorted pictures of their own body to their perceptual (How do you see yourself?), affective (How do you feel yourself?), metacognitive (How do others see you?) and ideal (How would you like to look like?) body image (self-body adjustment task). Brief exposures to round models increased liking judgments of round figures in both groups. However, only in AN patients, exposure to round models induced an increase in thin figures liking, which positively correlated with their preoccupation with dieting. Furthermore, exposure to round bodies in AN patients, but not in controls, increased the distortion for the perceptual body image and decreased the size of the ideal one. No differences between the two groups were obtained after adaptation to thin models. Our results suggest that AN patients' perception of their own and others' body is more easily malleable by exposure to round figures as compared to controls. Crucially, this mechanism may strongly contribute to the development and maintenance of self-body image disturbances

    Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes

    Get PDF
    Objective: To identify an appropriate cell source for the generation of meniscus substitutes, among those which would be available by arthroscopy of injured knee joints. Methods: Human inner meniscus cells, fat pad cells (FPC), synovial membrane cells (SMC) and articular chondrocytes (AC) were expanded with or without specific growth factors (Transforming growth factor-betal, Fibroblast growth factor-2 and Plate let-derived growth factor bb, TFP) and then induced to form three-dimensional cartilaginous tissues in pellet cultures, or using a hyaluronan-based scaffold (Hyaff(R)-11), in culture or in nude mice. Human native menisci were assessed as reference. Results: Cell expansion with TFP enhanced glycosaminoglycan (GAG) deposition by all cell types (up to 4.1-fold) and messenger RNA expression of collagen type II by FPC and SMC (up to 472-fold) following pellet culture. In all models, tissues generated by AC contained the highest fractions of GAG (up to 1.9 were positively stained for collagen type II (specific of the inner avascular region of meniscus), type IV (mainly present in the outer vascularized region of meniscus) and types I, III and VI (common to both meniscus regions). Instead, inner meniscus, FPC and SMC developed tissues containing negligible GAG and no detectable collagen type II protein. Tissues generated by AC remained biochemically and phenotypically stable upon ectopic implantation. Conclusions: Under our experimental conditions, only AC generated tissues containing relevant amounts of GAG and with cell phenotypes compatible with those of the inner and outer meniscus regions. Instead, the other investigated cell sources formed tissues resembling only the outer region of meniscus. It remains to be determined whether grafts based on AC will have the ability to reach the complex structural and functional organization typical of meniscus tissue. (C) 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights rese

    Clinical application of scaffolds for cartilage tissue engineering

    Get PDF
    The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair

    Studies on anterograde trophic interactions based on general muscle properties

    No full text
    General properties of rat skeletal muscle (extrajunctional membrane and contractile properties) are subjected to tight physiological neural regulation, as indicated by their striking alterations (up- or down-regulation) following denervation. The main contributions of the literature concerning the nature of the neural signals which mediate this regulation, are reviewed. The physiological regulation of these general properties appears to be operated by the action potential activity evoked by motoneurons in the muscle fibres. No need to postulate the participation of nerve-borne chemical substances, acetylcholine or unidentified "trophic factors", arises from the main experimental evidence. The stronger response to denervation of extrajunctional membrane properties with respect to pure paralysis is best explained by actions of factors released during wallerian degeneration of the transected nerves

    PTH1-34 induces the differentiation program in adult human keratinocytes cultured in MCDB 153 medium.

    No full text
    PTH1-34 induces the differentiation program in adult human keratinocytes cultured in MCDB 153 medium

    Investigations into mechanisms modulating proliferation, differentiation, and apoptosis in cultured liver, adrenal, skin, and bone cells

    No full text
    The intricate modulatory roles played by manifold hormones, growth factors, cytokines, extracellular calcium concentrations, intracellular second messengers, protein kinases, and nuclear poly(ADP-ribose) polymerase in proliferative, differentiative, and apoptotic processes have been the subject of investigations that were carried out by means of in vitro either primary or secondary/tertiary cultures of differentiated epithelial (hepatocytes, keratinocytes, and adrenocytes) and connective tissue cells (osteoblasts and fibroblasts) obtained from man and/or other mammalians. In most cases, an ad hoc model system, in which cells were floated on the top of the growth medium and, hence, could enjoy nearly normal respiratory exchanges, was used. Such a system increased cell viability and the ability of parenchymal epithelial cells to respond to extremely low concentrations of growth factors, hormones, and pharmaco-toxicological agents in a way conceivably very close to their behaviour in vivo
    corecore