8 research outputs found
Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity
Background: The computation of pattern motion in visual area MT based on motion input from area V1 has been investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion computation at positions with 2D features. Methodology/Principal Findings: Recent experiments revealed that neither of the two concepts alone is sufficient to explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be combined into one common architecture to explain these findings. The key features of the model are the computation of 1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback processing. Our results are also in line with findings concerning the solution of the aperture problem. Conclusions/Significance: We propose a new neural model for MT pattern computation and motion disambiguation that i
Recurrent network dynamics reconciles visual motion segmentation and integration
In sensory systems, a range of computational rules are presumed to be implemented by neuronal subpopulations with different tuning functions. For instance, in primate cortical area MT, different classes of direction-selective cells have been identified and related either to motion integration, segmentation or transparency. Still, how such different tuning properties are constructed is unclear. The dominant theoretical viewpoint based on a linear-nonlinear feed-forward cascade does not account for their complex temporal dynamics and their versatility when facing different input statistics. Here, we demonstrate that a recurrent network model of visual motion processing can reconcile these different properties. Using a ring network, we show how excitatory and inhibitory interactions can implement different computational rules such as vector averaging, winner-take-all or superposition. The model also captures ordered temporal transitions between these behaviors. In particular, depending on the inhibition regime the network can switch from motion integration to segmentation, thus being able to compute either a single pattern motion or to superpose multiple inputs as in motion transparency. We thus demonstrate that recurrent architectures can adaptively give rise to different cortical computational regimes depending upon the input statistics, from sensory flow integration to segmentation