347 research outputs found

    Development of mPing-based activation tags for crop insertional mutagenesis

    Get PDF
    Modern plant breeding increasingly relies on genomic information to guide crop improvement. Although some genes are characterized, additional tools are needed to effectively identify and characterize genes associated with crop traits. To address this need, the mPing element from rice was modified to serve as an activation tag to induce expression of nearby genes. Embedding promoter sequences in mPing resulted in a decrease in overall transposition rate; however, this effect was negated by using a hyperactive version of mPing called mmPing20. Transgenic soybean events carrying mPing-based activation tags and the appropriate transposase expression cassettes showed evidence of transposition. Expression analysis of a line that contained a heritable insertion of the mmPing20F activation tag indicated that the activation tag induced overexpression of the nearby soybean genes. This represents a significant advance in gene discovery technology as activation tags have the potential to induce more phenotypes than the original mPing element, improving the overall effectiveness of the mutagenesis system

    Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells

    Get PDF
    We report a method of fabricating a high work function, solution processable vanadium oxide (V2Ox(sol)) hole-extracting layer. The atmospheric processing conditions of film preparation have a critical influence on the electronic structure and stoichiometry of the V2Ox(sol), with a direct impact on organic photovoltaic (OPV) cell performance. Combined Kelvin probe (KP) and ultraviolet photoemission spectroscopy (UPS) measurements reveal a high work function, n-type character for the thin films, analogous to previously reported thermally evaporated transition metal oxides. Additional states within the band gap of V2Ox(sol) are observed in the UPS spectra and are demonstrated using X-ray photoelectron spectroscopy (XPS) to be due to the substoichiometric nature of V2Ox(sol). The optimized V2Ox(sol) layer performance is compared directly to bare indium–tin oxide (ITO), poly(ethyleneoxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thermally evaporated molybdenum oxide (MoOx) interfaces in both small molecule/fullerene and polymer/fullerene structures. OPV cells incorporating V2Ox(sol) are reported to achieve favorable initial cell performance and cell stability attributes

    Hyperhydration to Improve Kidney Outcomes in Children with Shiga Toxin-Producing E. coli Infection: A multinational embedded cluster crossover randomized trial (the HIKO STEC trial)

    Get PDF
    BACKGROUND: Shiga toxin-producing E. coli (STEC) infections affect children and adults worldwide, and treatment remain solely supportive. Up to 15-20% of children infected by high-risk STEC (i.e., E. coli that produce Shiga toxin 2) develop hemolytic anemia, thrombocytopenia, and kidney failure (i.e., hemolytic uremic syndrome (HUS)), over half of whom require acute dialysis and 3% die. Although no therapy is widely accepted as being able to prevent the development of HUS and its complications, several observational studies suggest that intravascular volume expansion (hyperhydration) may prevent end organ damage. A randomized trial is needed to confirm or refute this hypothesis. METHODS: We will conduct a pragmatic, embedded, cluster-randomized, crossover trial in 26 pediatric institutions to determine if hyperhydration, compared to conservative fluid management, improves outcomes in 1040 children with high-risk STEC infections. The primary outcome is major adverse kidney events within 30 days (MAKE30), a composite measure that includes death, initiation of new renal replacement therapy, or persistent kidney dysfunction. Secondary outcomes include life-threatening, extrarenal complications, and development of HUS. Pathway eligible children will be treated per institutional allocation to each pathway. In the hyperhydration pathway, all eligible children are hospitalized and administered 200% maintenance balanced crystalloid fluids up to targets of 10% weight gain and 20% reduction in hematocrit. Sites in the conservative fluid management pathway manage children as in- or outpatients, based on clinician preference, with the pathway focused on close laboratory monitoring, and maintenance of euvolemia. Based on historical data, we estimate that 10% of children in our conservative fluid management pathway will experience the primary outcome. With 26 clusters enrolling a mean of 40 patients each with an intraclass correlation coefficient of 0.11, we will have 90% power to detect a 5% absolute risk reduction. DISCUSSION: HUS is a devastating illness with no treatment options. This pragmatic study will determine if hyperhydration can reduce morbidity associated with HUS in children with high-risk STEC infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT05219110 . Registered on February 1, 2022

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    Fire performance of sandwich panels in a modified ISO 13784-1 small room test: the influence of increased fire load for different insulation materials

    Get PDF
    Four sandwich panel rooms were constructed as prescribed in the ISO 13784-1 test. However, the construction followed normal industry practice, and the panels were also subjected to the kinds of damage typically found in commercial premises, although such damage may not typically be concentrated in such a small room. The fire load was increased to simulate fires actually occurring in commercial premises by stepping up the propane burner output from the usual maximum of 300–600 kW, and by placing a substantial wooden crib in two of the rooms. The results showed significant differences in fire growth rate and burning behaviour between those panels filled with polyisocyanurate (PIR) and those filled with stone wool in both the experiments without and with the wooden crib. Most significantly, the PIR pyrolysis products caused earlier ignition (by radiation from above) of the wooden crib 11 min into the experiment (1 min after the burner was stepped up to 300 kW), whereas the crib ignited 22 min into the test (2 min after the burner had been stepped up to 600 kW, which is beyond the test standard both in time and heat input) for the stone wool panels. This interaction between building and contents is most often ignored in fire safety assessments. After a few minutes, the PIR pyrolysis products that escaped outside the room, from between the panels, ignited. The extra thermal exposure from the PIR-fuelled flames distorted the panels, which in turn exposed more PIR, resulting in large flames on both the inside and outside of the enclosure. From a fire safety perspective this is most important as it shows that with the large fire loads that are commonly found in commercial premises, steel-faced PIR filled panels are not capable of acting as fire barriers, and may support flame spread through compartment walls and ceilings. In addition, the PIR panelled rooms produced very large quantities of dense smoke and toxic effluents, whereas the stone wool panelled rooms produced small amounts of light smoke of lower toxicity. Furthermore, the experiments showed that modifications to the standard test can lead to extremely different outcomes for some of the products. As the modifications simulated real-life situations, it seems important to discuss whether the standard is robust enough for property safety scenarios encountered in industrial premises

    Handbook on the Carpathian Convention

    Get PDF
    This volume describes, article by article, the Carpathian Convention: the principles of international environmental law beyond each article, giving uselful examples of best practices and a detailed overview of the international documents providing guidance to its implementation. It is targeted at policy makers and all stakeholders involved in the implementationof the Convention itself

    The fire toxicity of polyurethane foams [Review]

    Get PDF
    Polyurethane is widely used, with its two major applications, soft furnishings and insulation, having low thermal inertia, and hence enhanced flammability. In addition to their flammability, polyurethanes form carbon monoxide, hydrogen cyanide and other toxic products on decomposition and combustion. The chemistry of polyurethane foams and their thermal decomposition are discussed in order to assess the relationship between the chemical and physical composition of the foam and the toxic products generated during their decomposition. The toxic product generation during flaming combustion of polyurethane foams is reviewed, in order to relate the yields of toxic products and the overall fire toxicity to the fire conditions. The methods of assessment of fire toxicity are outlined in order to understand how the fire toxicity of polyurethane foams may be quantified. In particular, the ventilation condition has a critical effect on the yield of the two major asphyxiants, carbon monoxide and hydrogen cyanid

    Specificity of the E. coli LysR-Type Transcriptional Regulators

    Get PDF
    Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR) form perhaps the largest family of transcriptional regulators in bacteria. Because genomes often encode many LTTR family members, it is assumed that many distinct homooligomers are formed simultaneously in the same cell without interfering with each other's activities, suggesting specificity in the interactions. However, this assumption has not been systematically tested.A negative-dominant assay with λcI repressor fusions was used to evaluate the assembly of the LTTRs in E. coli K-12. Thioredoxin (Trx)-LTTR fusions were used to challenge the homooligomeric interactions of λcI-LTTR fusions. Eight cI-LTTR fusions were challenged with twenty-eight Trx fusions. LTTRs could be divided into three classes based on their interactions with other LTTRs.Multimerization of LTTRs in E. coli K-12 is mostly specific. However, under the conditions of the assay, many LTTRs interact with more than one noncognate partner. The physiological significance and physical basis for these interactions are not known

    Hit selection with false discovery rate control in genome-scale RNAi screens

    Get PDF
    RNA interference (RNAi) is a modality in which small double-stranded RNA molecules (siRNAs) designed to lead to the degradation of specific mRNAs are introduced into cells or organisms. siRNA libraries have been developed in which siRNAs targeting virtually every gene in the human genome are designed, synthesized and are presented for introduction into cells by transfection in a microtiter plate array. These siRNAs can then be transfected into cells using high-throughput screening (HTS) methodologies. The goal of RNAi HTS is to identify a set of siRNAs that inhibit or activate defined cellular phenotypes. The commonly used analysis methods including median ± kMAD have issues about error rates in multiple hypothesis testing and plate-wise versus experiment-wise analysis. We propose a methodology based on a Bayesian framework to address these issues. Our approach allows for sharing of information across plates in a plate-wise analysis, which obviates the need for choosing either a plate-wise or experimental-wise analysis. The proposed approach incorporates information from reliable controls to achieve a higher power and a balance between the contribution from the samples and control wells. Our approach provides false discovery rate (FDR) control to address multiple testing issues and it is robust to outliers
    corecore