80 research outputs found

    The "silver" Japanese quail and the MITF gene: causal mutation, associated traits and homology with the "blue" chicken plumage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>MITF </it>(<it>microphthalmia-associated transcription factor</it>) gene has been investigated in mice and various vertebrates but its variations and associated effects have not yet been explored much in birds. The present study describes the causal mutation <it>B </it>at the <it>MITF </it>gene responsible for the "silver" plumage colour in the Japanese quail (<it>Coturnix japonica</it>), and its associated effects on growth and body composition, and tests its allelism with the "blue" plumage colour mutation <it>Bl </it>in <it>Gallus gallus</it>.</p> <p>Results</p> <p>The semi dominant <it>B </it>mutation results from a premature stop codon caused by a 2 bp deletion in exon 11 of <it>MITF</it>. Homozygous "white" (<it>B/B</it>) quail which have a white plumage also show a slightly lower growth, lower body temperature, smaller heart, and lighter <it>pectoralis </it>muscles but more abdominal adipose tissue than the recessive homozygous "wild-type" (<it>+/+</it>) and heterozygous "silver" (<it>B/+</it>) quail. Similar observations on cardiac and body growth were made on mice (<it>Mus musculus</it>) homozygous for mutations at <it>MITF</it>. The production of chicken-quail hybrids with a white plumage obtained by crossing <it>Bl/+ </it>chicken heterozygous for the <it>blue </it>mutation with <it>B/B </it>white quail indicated that the mutations were allelic.</p> <p>Conclusion</p> <p>The "silver" Japanese quail is an interesting model for the comparative study of the effects of <it>MITF </it>in birds and mammals. Further investigation using a chicken family segregating for the "blue" plumage and molecular data will be needed to confirm if the "blue" plumage in chicken results from a mutation in <it>MITF</it>.</p

    Lattice Point Generating Functions and Symmetric Cones

    Full text link
    We show that a recent identity of Beck-Gessel-Lee-Savage on the generating function of symmetrically contrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out the specific cases of a symmetry group of type A (previously known) and types B and D (new). We obtain several applications of the special cases in type B, including identities involving permutation statistics and lecture hall partitions.Comment: 19 page

    A MITF Mutation Associated with a Dominant White Phenotype and Bilateral Deafness in German Fleckvieh Cattle

    Get PDF
    A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome). This syndrome has been mapped to bovine chromosome (BTA) 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF) as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans

    Acetylation reprograms MITF target selectivity and residence time

    Get PDF
    The ability of transcription factors to discriminate between different classes of binding sites associated with specific biological functions underpins effective gene regulation in development and homeostasis. How this is achieved is poorly understood. The microphthalmia-associated transcription factor MITF is a lineage-survival oncogene that plays a crucial role in melanocyte development and melanoma. MITF suppresses invasion, reprograms metabolism and promotes both proliferation and differentiation. How MITF distinguishes between differentiation and proliferation-associated targets is unknown. Here we show that compared to many transcription factors MITF exhibits a very long residence time which is reduced by p300/CBP-mediated MITF acetylation at K206. While K206 acetylation also decreases genome-wide MITF DNA-binding affinity, it preferentially directs DNA binding away from differentiation-associated CATGTG motifs toward CACGTG elements. The results reveal an acetylation-mediated switch that suppresses differentiation and provides a mechanistic explanation of why a human K206Q MITF mutation is associated with Waardenburg syndrome

    Acetylation reprograms MITF target selectivity and residence time

    Get PDF
    Abstract The ability of transcription factors to discriminate between different classes of binding sites associated with specific biological functions underpins effective gene regulation in development and homeostasis. How this is achieved is poorly understood. The microphthalmia-associated transcription factor MITF is a lineage-survival oncogene that plays a crucial role in melanocyte development and melanoma. MITF suppresses invasion, reprograms metabolism and promotes both proliferation and differentiation. How MITF distinguishes between differentiation and proliferation-associated targets is unknown. Here we show that compared to many transcription factors MITF exhibits a very long residence time which is reduced by p300/CBP-mediated MITF acetylation at K206. While K206 acetylation also decreases genome-wide MITF DNA-binding affinity, it preferentially directs DNA binding away from differentiation-associated CATGTG motifs toward CACGTG elements. The results reveal an acetylation-mediated switch that suppresses differentiation and provides a mechanistic explanation of why a human K206Q MITF mutation is associated with Waardenburg syndrome

    Zeros of the Möbius function of permutations

    Get PDF
    We show that if a permutation \pi contains two intervals of length 2, where one interval is an ascent and the other a descent, then the Möbius function \mu[1,\pi] of the interval [1,\pi] is zero. As a consequence, we prove that the proportion of permutations of length n\textit{n} with principal Möbius function equal to zero is asymptotically bounded below by (1\ -\ \sfrac{1}{e)^2} \geq 0.3995. This is the first result determining the value of \mu\left[1,\pi\right] for an asymptotically positive proportion of permutations \pi. We further establish other general conditions on a permutation \pi that ensure \mu\left[1,\pi\right]\ =\ 0, including the occurrence in \pi of any interval of the form \alpha\oplus\ 1\ \oplus\ \beta

    TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell proliferation genes

    Get PDF
    Funding Information: This work was supported by grants from the National Institutes of Health (NIH) to RAC (R01-AR062457), a postdoctoral fellowship from the American Association for Anatomy to CK, and grants from the Research Fund of Iceland to ES (207067 & 217768). https://grants.nih.gov/grants/ funding/r01.htm https://www.anatomy.org https:// en.rannis.is/funding/research/icelandic-researchfund/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publisher Copyright: © 2022 Kenny et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.In developing melanocytes and in melanoma cells, multiple paralogs of the Activating-enhancer-binding Protein 2 family of transcription factors (TFAP2) contribute to expression of genes encoding pigmentation regulators, but their interaction with Microphthalmia transcription factor (MITF), a master regulator of these cells, is unclear. Supporting the model that TFAP2 facilitates MITF's ability to activate expression of pigmentation genes, single-cell seq analysis of zebrafish embryos revealed that pigmentation genes are only expressed in the subset of mitfa-expressing cells that also express tfap2 paralogs. To test this model in SK-MEL-28 melanoma cells we deleted the two TFAP2 paralogs with highest expression, TFAP2A and TFAP2C, creating TFAP2 knockout (TFAP2-KO) cells. We then assessed gene expression, chromatin accessibility, binding of TFAP2A and of MITF, and the chromatin marks H3K27Ac and H3K27Me3 which are characteristic of active enhancers and silenced chromatin, respectively. Integrated analyses of these datasets indicate TFAP2 paralogs directly activate enhancers near genes enriched for roles in pigmentation and proliferation, and directly repress enhancers near genes enriched for roles in cell adhesion. Consistently, compared to WT cells, TFAP2-KO cells proliferate less and adhere to one another more. TFAP2 paralogs and MITF co-operatively activate a subset of enhancers, with the former necessary for MITF binding and chromatin accessibility. By contrast, TFAP2 paralogs and MITF do not appear to co-operatively inhibit enhancers. These studies reveal a mechanism by which TFAP2 profoundly influences the set of genes activated by MITF, and thereby the phenotype of pigment cells and melanoma cells.Peer reviewe

    Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses

    Get PDF
    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes

    Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle

    Get PDF
    International audienceAbstractBackgroundWhite spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein–Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein–Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date.ResultsUsing imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region.ConclusionsOur findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics

    BRAF/MAPK and GSK3 signaling converge to control MITF nuclear export

    Get PDF
    The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import–export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal
    corecore