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Abstract

We show that if a permutation 7 contains two intervals of length 2,
where one interval is an ascent and the other a descent, then the Mobius
function p[l, 7] of the interval [1, 7] is zero. As a consequence, we prove
that the proportion of permutations of length n with principal Mobius
function equal to zero is asymptotically bounded below by (1 —1/e)? >
0.3995. This is the first result determining the value of p[l,7] for an
asymptotically positive proportion of permutations .

We further establish other general conditions on a permutation 7 that
ensure p[1, 7] = 0 including the occurrence in 7 of any interval of the form
ad®1ep.

1 Introduction

In this section we describe our principal results, and give an overview of the
previous work in this area. Formal definitions are given in the next section.

Let 0 and 7 be permutations of positive integers. We say that m contains
o if there is a subsequence of elements of 7 that is order-isomorphic to o. As
an example, 3624715 contains 3142 as the subsequences 6275 and 6475. If o is
contained in 7, then we write o < 7.

The set of all permutations is a poset under the partial order given by con-
tainment. A closed interval [o, 7] in a poset is the set defined by {7 : 0 < 7 < 7},
and a half-open interval [o, ) is the set {7 : ¢ < 7 < 7}. The Mdbius function
of an interval [0, 7] is defined recursively as follows:

0 ifo £,
ifo=m
o,T| = )
Hlo.m — > plo,7] otherwise.
T€[o,m)
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From the definition of the Mobius function it follows that if o < m, then
ZTE[U,W] H’[O" T] =0.

In this paper, we are mainly concerned with the principal Mébius function
of a permutation , written p[r], defined by p[r] = p[l,7]. We focus on the
zeros of the principal Mobius function, that is, on the permutations 7 for which
pu[r] = 0. We show that we can often determine that a permutation = is such
a Mobius zero by examining small localities of 7. We formalize this idea using
the notion of an “annihilator”. Informally, an annihilator is a permutation «
such that any permutation 7 containing an interval copy of « is a Mobius zero.
We will describe an infinite family of annihilators.

We will also prove that any permutation containing an increasing as well
as a decreasing interval of size 2 is a Md&bius zero. Based on this result, we
show that the asymptotic proportion of M&bius zeros among the permutations
of a given length is at least (1 — 1/e)? > 0.3995. This is the first known result
determining the values of the principal Mébius function for an asymptotically
positive fraction of permutations. We will also demonstrate how our results on
the principal Mobius function can be extended to intervals whose lower bound
is not 1.

The question of computing the Mobius function in the permutation poset
was first raised by Wilf [20]. The first result was by Sagan and Vatter [12],
who determined the Mdbius function on intervals of layered permutations. Ste-
ingrimsson and Tenner [19] found pairs of permutations (o, 7) where pfo, 7] = 0.

Burstein, Jelinek, Jelinkovd and Steingrimsson [7] found a recursion for the
Mobius function for sum and skew decomposable permutations. They used this
to determine the Mobius function for separable permutations. Their results for
sum and skew decomposable permutations implicitly include a result that only
concerns small localities, which is that, up to symmetry, if a permutation 7 of
length greater than two begins 12, then u[r] = 0.

Smith [14] found an explicit formula for the M&bius function on the interval
[1,7] for all permutations 7 with a single descent. Smith’s paper includes a
lemma stating that if a permutation 7 contains an interval order-isomorphic to
123, then p[r] = 0. While the result in [7] requires that the permutation starts
with a particular sequence, Smith’s result is, in some sense, more general, as the
critical interval (123) can occur in any position. Smith’s lemma may be viewed
as the first instance of an annihilator result. Our results on annihilators provide
a common generalization of Smith’s lemma and the above mentioned result of
Burstein et al. [7].

Smith [15] has explicit expressions for the Mobius function pfo, 7] when o and
7 have the same number of descents. In [16], Smith found an expression that de-
termines the Mobius function for all intervals in the poset, although the expres-
sion involves a rather complicated double sum, starting with 3° ., -y u[o, 7).

Brignall and Marchant [6] showed that if the lower bound of an interval is
indecomposable, then the Mobius function depends only on the indecomposable
permutations contained in the upper bound, and used this result to find a fast
polynomial algorithm for computing pu[r| where 7 is an increasing oscillation.



2 Definitions and notation

We let S,, denote the set of permutations of length n. We represent a per-
mutation m € S, as a sequence my,Ta,..., T, of integers from the set [n] =
{1,2,...,n} in which each element of [n] appears exactly once. We let € denote
the unique permutation of length 0.
A sequence of numbers a1, as, . .., a, is order-isomorphic to a sequence by, bs,
.., by if for every i,j € [n] we have a; < a; & b; < b;. A permutation
m € S, contains a permutation o € Sy if m has a subsequence of length k
order-isomorphic to o.

An interval of a permutation 7 is a non-empty set of contiguous indices
i,i+1,...,j where the set of values {m;, m;41,...,7;} is also contiguous. We
say that 7 has an interval copy of a permutation « if it contains an interval of
length || whose elements form a subsequence order-isomorphic to a.

An adjacency in a permutation is an interval of length two. If a permutation
contains a monotonic interval of length three or more, then each subinterval of
length two is an adjacency. As examples, 367249815 has two adjacencies, 67 and
98; and 1432 also has two adjacencies, 43 and 32. If an adjacency is ascending,
then it is an up-adjacency, otherwise it is a down-adjacency.

If a permutation 7 contains at least one up-adjacency, and at least one
down-adjacency, then we say that m has opposing adjacencies. An example of a
permutation with opposing adjacencies is 367249815, which is shown in Figure 1.

367249815

Figure 1: A permutation with opposing adjacencies.

A permutation that does not contain any adjacencies is adjacency-free. Some
early papers use the term “strongly irreducible” for what we call adjacency-free
permutations. See, for example, Atkinson and Stitt [3].

Given a permutation o of length n, and permutations aq,...,a,, not all
of them equal to the empty permutation e, the inflation of o by ay,...,an,
written as olay, ..., ay], is the permutation obtained by removing the element
o; if a; = €, and replacing o; with an interval isomorphic to «; otherwise.
Note that this is slightly different to the standard definition of inflation, orig-
inally given in Albert and Atkinson [1], which does not allow inflation by the
empty permutation. As examples, 3624715[1,12,1,1,21,1,1] = 367249815, and
3624715[¢, 1,1,¢,1,¢,1] = 3142.

In many cases we will be interested in permutations where most positions
are inflated by the singleton permutation 1. If 0 = 3624715, then we will write
0[1,12,1,1,21,1,1] = 367249815 as 02 5[12,21]. Formally, o;,, ;. [a1,. .., o]
is the inflation of o where oy, is inflated by «; for j = 1,...,k, and all other



positions of ¢ are inflated by 1. When using this notation, we always assume
that the indices i1, ...,4; are distinct; however, we make no assumption about
their relative order.

Our aim is to study the Mobius function of the permutation poset, that
is, the poset of finite permutations ordered by containment. We are interested
in describing general examples of intervals [o, 7] such that plo, 7] = 0, with
particular emphasis on the case 0 = 1. We say that 7 is a Mdbius zero (or just
zero) if u[r] = 0, and we say that 7 is a o-zero if p[o, 7] = 0.

It turns out that many sufficient conditions for m to be a Mobius zero can
be stated in terms of inflations. We say that a permutation ¢ is an annihilator
if every permutation that has an interval copy of ¢ is a Mdbius zero; in other
words, for every 7 and every ¢ < |7| the permutation 7;[¢] is a Mobius zero.
More generally, we say that ¢ is a o-annihilator if every permutation with an
interval copy of ¢ is a o-zero.

We say that a pair of permutations ¢, i is an annihilator pair if for every
permutation 7 and every pair of distinct indices ¢, < ||, the permutation
7i;1¢, %] is a Mobius zero.

Observe that for an annihilator ¢, any permutation containing an interval
copy of ¢ is also an annihilator. Likewise, if ¢ and 1 form an annihilator
pair then any permutation containing disjoint interval copies of ¢ and v is an
annihilator.

As our first main result, presented in Section 3, we show that the two per-
mutations 12 and 21 are an annihilator pair, or equivalently, any permutation
with opposing adjacencies is a Mobius zero. Later, in Section 5, we use this
result to prove that Mobius zeros have asymptotic density at least (1 —1/e)?.

We also prove that for any two non-empty permutations o and 3, the per-
mutation « ® 1 ® f = 123[a, 1, 5] is an annihilator, and generalize this result
to a construction of o-annihilators for general o. These results are presented in
Section 4.

Finally, in Section 6, we give several examples of annihilators and annihilator
pairs that do not directly follow from the results in the previous sections.

2.1 Intervals with vanishing Mobius function

We will now present several basic facts about the Md&bius function, which are
valid in an arbitrary finite poset. The first fact is a simple observation following
directly from the definition of the Mobius function, and we present it without
proof.

Fact 1. Let P be a finite poset with Mobius function pp, and let x and y be
two elements of P satisfying pp[z,y] = 0. Let Q be the poset obtained from P
by deleting the element y, and let pg be its Mobius function. Then for every
z € @, we have pglx, z| = pplz, 2.

Next, we introduce two types of intervals whose specific structure ensures
that their Mobius function is zero.

Let [x,y] be a finite interval in a poset P. We say that [z, y] is narrow-tipped
if it contains an element z different from x such that [z, y) = [z, z]. The element
z is then called the core of [z,y].

We say that the interval [z,y] is diamond-tipped if there are three elements
z, 2" and w, all different from x, and such that
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Figure 2: Examples of narrow-tipped (left) and diamond-tipped (right) posets.

1. [z,y) = [z, 2] U [z, /] and
2. [x,z] N[z, 2] = [z, w].

Condition 2 is equivalent to w being the greatest lower bound of z and 2’ in the
interval [z, y]. The triple of elements (z, z’,w) is again called the core of [z, y].
Figure 2 shows examples of narrow-tipped and diamond-tipped posets.

Fact 2. Let P be a poset with Mébius function up, and let [x,y] be a finite
interval in P. If [x,y] is narrow-tipped or diamond-tipped, then pplz,y] = 0.

Proof. If [z,y] is narrow-tipped with core z, then
MP[%?J] = - Z /J,P[J:,’U] = - Z HP[Z‘,’U] =0.
vE[z,y) vE([z,z2]
If [z, y] is diamond-tipped with core (z, z’, w) then

pele,y) == > pele, o]

vE(z,y)

= Y uele)

vE[z,z|U[z,z]

= — Z HJP[xarU}f Z .UP[IarU}+ up[x,v]

vE[z,z] veE(x,z’] ve(z,z]N[x,2’]
= - Z HP[:E’U}_ Z [Lp[ZII,’U}—F NP[$7U]
v€E(z,z] vE(z,z’] vE[z,w]
=0. O

2.2 Embeddings

An embedding of a permutation o € Sy into a permutation 7w € S, is a function
f: [k] = [n] with the following properties:



e 1< f(1)< f(2) < -+ < f(k) <n.
e For any 4,5 € [k], we have 0; < 0 if and only if mp;) < ms(j).

We let £(o, ) denote the set of embeddings of ¢ into 7, and E(c,7) denote
the cardinality of £(o, 7).

For an embedding f of ¢ into 7, the image of f, denoted Img(f), is the set
{f(@); i € [k]}. In particular, | Img(f)| = |o|. The permutation o is the source
of the embedding f, denoted src,(f). When 7 is clear from the context (as it
usually will be) we write src(f) instead of src,(f). Note that for a fixed , the
set Img(f) determines both f and src,(f) uniquely.

We say that an embedding f is even if the cardinality of Img(f) is even,
otherwise f is odd. In our arguments, we will frequently consider sign-reversing
mappings on sets of embeddings (with different sources), which are mappings
that map an odd embedding to an even one and vice versa. A typical example
of a sign-reversing mapping is the so-called i-switch, which we now define. For
a permutation m € S, let £(*, ) be the set | J, ... £(o, ). For an index i € [n],
the i-switch of an embedding f € &(x, ), denoted A;(f), is the embedding
g € E(x,7) uniquely determined by the following properties:

Img(g) = Img(f) U {i} if i ¢ Img(f), and
Img(g) = Img(f) \ {i} if ¢ € Img(f).

For example, consider the permutations ¢ = 132 and m = 41253, and the
embedding f € (o, ) satisfying f(1) = 2, f(2) = 4, and f(3) = 5. We then
have Tmg(f) = {2,4,5}. Defining g = A3(f), we see that Img(g) = {2, 3,4,5},
and src(g) is the permutation 1243. Similarly, for h = A5(g), we have Img(h) =
{2,3,4} and src(h) = 123.

Note that for any = € S,, and any ¢ € [n], the function A; is a sign-reversing
involution on the set £(x, 7).

Consider, for a given 7 € S,,, two embeddings f,g € £(x, 7). We say that f
is contained in g if Img(f) C Img(g). Note that if f is contained in g, then the
permutation src(f) is contained in src(g), and if a permutation A is contained
in a permutation 7, then any embedding from &(7,7) contains at least one
embedding from £(A, 7). In particular, the mapping f +— src(f) is a poset
homomorphism from the set £(x,7) ordered by containment onto the interval
[e, 7] in the permutation pattern poset.

2.3 Mobius function via normal embeddings

We will now derive a general formula which will become useful in several sub-
sequent arguments. The formula can be seen as a direct consequence of the
well-known Mobius inversion formula. The following form of the Md&bius inver-
sion formula can be deduced, for example, from Proposition 3.7.2 in Stanley’s
book [18]. A poset is locally finite if each of its intervals is finite.

Fact 3 (Mobius inversion formula). Let P be a locally finite poset with mazimum
element y, let p be the Mobius function of P, and let F: P — R be a function.
If a function G: P — R is defined by



then for every x € P, we have
F@)= Y ule,2G().
z€[z,y]
As a consequence, we obtain the following result.

Proposition 4. Let o and 7 be arbitrary permutations, and let F: [o,7] = R
be a function satisfying F(mw) = 1. We then have

plos] =Flo) = Y ulo,A Y Flr). (1)
AE|lo,m) TE[N,T]
Proof. Fix o, m and F. For A € [o, 7], define G(X) = > ., ; F(7). Using
Fact 3 for the poset P = [0, 7], we obtain
F(o)= Y ulo,NG).

A€o, ]

Substituting the definition of G(A) into the above identity and noting that
F(m) =1, we get

Fo)= Y plo Al Y F(r)

AE[o,m] TEN,T]
=ploml+ > plo Al Y F(r),
A€E[o,7) TE[N,T]
from which the proposition follows. O

In our applications, the function F(7) will usually be defined in terms of the
number of embeddings of 7 into 7 satisfying certain additional conditions. In
the literature, there are several definitions of such restricted embeddings, which
are usually referred to as normal embeddings.

The notion of normal embedding seems to originate from the work of Bjorner [4],
who defined normal embeddings between words, and showed that in the sub-
word order of words over a finite alphabet, the Mobius function of any interval
[z, y] is equal in absolute value to the number of normal embeddings of z into y.

Bjorner’s approach was later extended to the computation of the Mé&bius
function in the composition poset [12], the poset of separable permutations [7],
or the poset of permutations with a fixed number of descents [15]. In all these
cases, the authors define a notion of “normal” embeddings tailored for their
poset, and then express the Mobius function of an interval [z, y] as the sum of
weights of the “normal” embeddings of = into y, where each normal embedding
has weight 1 or —1.

For general permutations, this simple approach fails, since the Mobius func-
tion plo, ] is sometimes larger than the number of all embeddings of o into .
However, Smith [16] introduced a notion of normal embedding applicable to ar-
bitrary permutations, and proved a formula expressing p[o, 7] as a summation
over certain sets of normal embeddings.

For consistency, we adopt the term “normal embedding” in this paper, al-
though in our proofs, we will need to introduce several notions of normality,



which are different from each other and from the notions of normality intro-
duced by previous authors. We will always use NE(7,7) to denote the set of
embeddings of 7 into 7 satisfying the definition of normality used in the given
context, and we let NE(7, ) be the cardinality of NE(7, 7).

The next proposition provides a general basis for all our subsequent appli-
cations of normal embeddings.

Proposition 5. Let o and m be permutations. Suppose that for each T € [0, 7]
we fix a subset NE(T,7) of E(T, ), with the elements of NE(7,m) being referred
to as normal embeddings of T into 7. Assume that NE(w,7) = E(m, ), that is,
the unique embedding of m into 7 is normal. For each \ € [0, ), define the two
sets of embeddings

NEA(odd, 7) = U NE(r,m) and

TE[N,T]
|7| odd

NEy(even, ) = U NE(r, 7).

TE[A,T]

|7| even
If for every X\ € [o,m) such that p[o, \] # 0, we have the identity
INE\(odd, 7)| = |[NE(even, )|, (2)
then plo, 7] = (=1)I"1=1°INE(q, 7).

Proof. The trick is to define the function F(7) = (—1)I"I=I7INE(7, 7) and apply
Proposition 4. This yields

plo] =Flo)— > nlo,A Y F(r)

AE[o,m) TE[N,T]

=F(o)— Y plo A > ()" INE(r,7)
A€o, ) TE[A,T]

=F(o)— Z ulo, A}(—l)‘“l(\NSA(even, )| — INEx(odd, 7))
AEo,m)

F(o)
= (-7 INE(o, ),
as claimed. 0

We remark that the general formula of Proposition 4 can be useful even in sit-
uations where the more restrictive assumptions of Proposition 5 fail. An example
of such application of Proposition 4 will appear in an upcoming manuscript [9],
which is being prepared in parallel to this publication.

3 Permutations with opposing adjacencies

In this section, we show that if a permutation has opposing adjacencies, then
the value of the principal Mobius function is zero.

Theorem 6. If ™ has opposing adjacencies, then p[r] = 0.



For this theorem, we are able to give two proofs. One of them is based
on the notion of diamond-tipped intervals, and the other uses the approach of
normal embeddings. As both these approaches will later be adapted to more
complicated settings, we find it instructive to include both proofs here.

Proof via diamond-tipped posets. For contradiction, suppose that the theorem
fails, and let 7 be a shortest permutation with opposing adjacencies such that
wu[m] # 0. Since 7 has opposing adjacencies, there is a permutation 7 and indices
i,j < |7| such that m = 7; ;[12, 21]. Define ¢ = 7, ;[1,21] and ¢’ = 7, ;[12, 1].

We claim that the interval [1, 7] can be transformed into a diamond-tipped
interval with core (¢, @', 7) by deleting a set of Mdbius zeros from the interior of
[1,7]. Since by Fact 1, the deletion of M&bius zeros does not affect the value of
u[1, 7], and since diamond-tipped intervals have zero Mobius function by Fact 2,
this claim will imply that u[1,7] = 0, a contradiction.

To prove the claim, note first that any permutation A € [1,7) with oppos-
ing adjacencies is a Mobius zero, since 7 is a minimal counterexample to the
theorem. Choose any A € [1,7). Observe that if A has no up-adjacency, then
A < ¢, and symmetrically, if A has no down-adjacency, then A < ¢’. Thus, any
A € [1,7) not belonging to [1,¢] U [1,¢’] has opposing adjacencies and can be
deleted from [1,7].

Next, suppose that a permutation A is in [1,¢] N [1,¢'] but not in [1,7].
Observe that any permutation in [1,¢] \ [1,7] has a down-adjacency, while any
permutation in [1, ¢']\ [1, 7] has an up-adjacency. It follows that A has opposing
adjacencies and can again be deleted from [1, 7].

After these deletions, the remaining poset is diamond-tipped with core (¢, ¢', 7)
as claimed, hence u[1,7] = 0, a contradiction. O

Proof via normal embeddings. Suppose again that m € §,, is a shortest coun-
terexample. Suppose that 7 has an up-adjacency at positions ¢, i + 1, and a
down-adjacency at positions j, j + 1. Note that the positions ¢, ¢ + 1, 7 and
7+ 1 are all distinct, and in particular n > 4.

We will say that an embedding f € E(x,7) is normal if Img(f) is a superset
of [n]\{%,j}. In other words, Img(f) contains all positions of = with the possible
exception of ¢ and j. Thus, there are four normal embeddings.

We will use Proposition 5 with the above notion of normal embeddings and
with ¢ = 1. Clearly, we have £(m,7) = NE(m,m). The main task is to verify
equation (2), that is, to show that for every A € [1,7) such that u[A] # 0 we
have IN€y(odd, )| = [NE(even,)|. To prove this identity, we let N'E(, )
denote the set N €y (odd, 1) UNE(even, w), and we will provide a sign-reversing
involution on N'E (*, ).

Choose a A € [1,7) with u[A] # 0. It follows that A does not have opposing
adjacencies, otherwise it would be a counterexample shorter than 7. Without
loss of generality, assume that A has no up-adjacency. We will prove that the
i-switch operation A; is a sign-reversing involution on N & (*, 7).

It is clear that A; is sign-reversing. We need to demonstrate that for every
f € NEA(x,m), the embedding g = A;(f) is again in NEy(, 7). It is clear that
¢ is normal. It remains to argue that src(g) contains A, or in other words, that
there is an embedding of A into 7 contained in g. Let h be a (not necessarily
normal) embedding of X into 7 contained in f. If ¢ is not in Img(h), then h
is also contained in g, and we are done. Suppose now that ¢ € Img(h). Then



1+ 1 ¢ Img(h), because i and i + 1 form an up-adjacency in 7 while A has no
up-adjacency. We modify the embedding h so that the element mapped to @
will be mapped to i + 1 instead, and the mapping of the remaining elements is
unchanged; let A’ be the resulting embedding (formally, we have A;(A;11(h)) =
h’). Since ¢ and ¢ + 1 form an adjacency in m, we have src(h’) = src(h) = A.
Since ¢ + 1 is in the image of all normal embeddings, we see that A’ is contained
in g, and so g € NE,(x,m). This shows that A; is the required sign-reversing
involution on NE,(x, ), verifying the assumptions of Proposition 5.
Proposition 5 then gives us that p[l,7] = (=1)""INE(1, 7). Since every
normal embedding into 7 contains both ¢ + 1 and j 4+ 1 in its image, there is
clearly no normal embedding of 1 into 7 and therefore we get u[l,7] =0. O

4 A general construction of s-annihilators

Let o be a fixed non-empty lower bound permutation (the case o = 1 being the
most interesting). Recall that a permutation ¢ is a o-zero if ulo, ¢ = 0, and ¢
is a o-annihilator if every permutation with an interval copy of ¢ is a o-zero.
Clearly, any o-annihilator is also a o-zero. Our goal in this section is to present
a general construction of an infinite family of o-annihilators.

A permutation ¢ is o-narrow if ¢ contains a permutation ¢~ of size |¢p| — 1
such that every permutation in the set [1, )\ [1,$~] is a o-annihilator. In such
situation, we call ¢~ a o-core of ¢.

Note that if ¢ is o-narrow with o-core ¢, then the interval [1,¢] can be
transformed into a narrow-tipped interval by a deletion of g-annihilators. Our
first goal is to show that, with a few exceptions, all o-narrow permutations are
o-annihilators.

Proposition 7. If a permutation ¢ is o-narrow with a o-core ¢~ , and if o has
no interval copy of ¢ or of ¢—, then ¢ is a o-annihilator.

Proof. Let ¢ be og-narrow with a o-core ¢~. Let m be a permutation with an
interval copy of ¢, that is, 7 = 7;[¢] for some 7 and i. We show that ufo, 7] = 0.
We may assume that o < m, otherwise ulo, 7] = 0 trivially. Let 7~ be the
permutation 7;[¢~]. Note that o # 7 and ¢ # 7, since o has no interval copy
of ¢ or of ¢~

The key step of the proof is to show that any permutation in [o,7) \ [0, 7]
is a o-zero. After we have proved this, we may use Fact 1 to remove all such
o-zeros from the interval [o, 7] without affecting the value of u[o, 7]; note that
o itself is clearly not a o-zero, so it will not be removed, implying that o < 7~.
After the removal of [o,7) \ [o,7], the remainder of the interval [o, 7] is a
narrow-tipped poset with core 7, yielding u[o, 7] = 0 by Fact 2.

Therefore, to prove that ulo, 7] = 0 for a particular 7 = 7;[¢], it is enough
to show that all the permutations in [o,7) \ [0, 77| are o-zeros. We prove this
by induction on |7|.

If 7] = 1, we have m = ¢ and 7~ = ¢~ . Then all the permutations in [1,7)\
[1,77] are o-annihilators (and therefore o-zeros) by definition of o-narrowness,
and in particular, restricting our attention to permutations containing o, we see
that all the permutations in [o,7) \ [0, 7] are o-zeros, as claimed.

Suppose that |7| > 1. Consider a permutation v € [o,7) \ [0,7~]. Since v
is contained in 7 = 7;[¢], it can be expressed as vy = 7/[¢"] for some € < ¢* < ¢
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and 1 < 7% < 7, where 7* has an embedding into 7 which maps j to i. Note
that ¢* cannot be contained in ¢~, because in such case we would have v < 7~
Moreover, if ¢* = ¢, then necessarily 7* < 7, and by induction -y is a o-zero.
Finally, if ¢* is in [1,¢) \ [1, ¢~], then ¢* is a o-annihilator by the o-narrowness
of ¢, and hence v is a o-zero. O

With the help of Proposition 7, we can now provide an explicit general
construction of o-annihilators.

Proposition 8. Let a and 5 be non-empty permutations. Assume that o does
not contain any interval copy of a permutation of the form o @ B with 1 <
o <aand 1< B < B (in particular, o has no up-adjacency). Then a® 1 &
is o-narrow with o-core a ® 3, and a ® 1@ B is a o-annihilator.

Proof. We proceed by induction on |a| + |8]. Suppose first that o = 8 = 1.
Then trivially a & 1 & 8 = 123 is o-narrow with o-core a @ § = 12, since the
set [1,123) \ [1,12] is empty. Moreover, by assumption, ¢ has no interval copy
of 12, and therefore also no interval copy of 123, hence 123 is a o-annihilator by
Proposition 7.

Suppose now that |a] + 3] > 2. Define g =a@®1® S and ¢~ = a® 5. To
prove that ¢ is o-narrow with o-core ¢, we will show that any permutation
v € [1,¢0) \ [1,¢7] is a o-annihilator. Such a v has the form o &1 @ 5’ for
some 1 <o’ <aand 1< g <g, with [&/| +|8'| < |a|+ |8]; note that we here
exclude the cases o’ = € and 3’ = ¢, because in these cases v would be contained
in ¢~ . By induction, v is g-narrow, with o-core v~ = o/ @ §’. Moreover, o has
no interval isomorphic to v or 7~ : observe that if o had an interval isomorphic
to 7, it would also have an interval isomorphic to o’ @ 1, which is forbidden by
our assumptions on ¢. Thus, we may apply Proposition 7 to conclude that v
is a g-annihilator, and in particular ¢ is o-narrow with o-core ¢, as claimed.
Proposition 7 then gives us that ¢ is a g-annihilator. O

Focusing on the special case 0 = 1, which satisfies the assumptions of Propo-
sition 8 trivially, we obtain the following result.

Corollary 9. For any non-empty permutations o and 3, the permutation o @
1 B is an annihilator.

5 The density of zeros

Our goal is to find an asymptotic positive lower bound on the proportion of
permutations of length n whose principal Mobius function is zero. The key step
is the following lemma.

Lemma 10. Let s, be the number of permutations of size n with opposing

adjacencies. Then
s 1\? 1
s (1Y o (2).
n! e n

Proof. Let a, be the number of permutations of size n that have no up adja-
cency, and let b, be the number of permutations of size n that have neither an
up adjacency nor a down adjacency.
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The numbers a,, (sequence A000255 in the OEIS [13]) have already been
studied by Euler [8], and it is known [11] that they satisfy a,, /n! = e"14+0O(n=1).

The numbers b,, (sequence A002464 in the OEIS [13]) satisfy the asymptotics
b,/n! = e 2 + O(n~1), which follows from the results of Kaplansky [10] (see
also Albert et al. [2]).

We may now express the number s, of permutations with opposing adja-
cencies by inclusion-exclusion as follows: we subtract from n! the number of
permutations having no up-adjacency and the number of permutations having
no down-adjacency, and then we add back the number of permutations having
no adjacency at all. This yields s, = n! — 2a,, + b,, from which the lemma
follows by the above-mentioned asymptotics of a,, and b,,. O

Combining Theorem 6 with Lemma 10 we obtain the following consequence,
which is the main result of this section.

Corollary 11. For a given n and for m a uniformly random permutation of
length n, the probability that ulr] =0 is at least

(-2 ()

6 More complicated examples

We will now construct several specific examples of annihilators and annihilator
pairs, which are not covered by the general results obtained in the previous
sections. We begin with a construction of four new annihilator pairs, which we
will later use to construct new annihilators.

Theorem 12. The two permutations 213 and 2431 form an annihilator pair.

Proof. Our proof is based on the concept of normal embeddings and follows a
similar structure as the normal embedding proof of Theorem 6.

Suppose for contradiction that there is a permutation m that contains an
interval isomorphic to 213 as well as an interval isomorphic to 2431, and that
u[m] # 0. Fix a smallest possible 7, and let n be its length. Note that an interval
isomorphic to 213 is necessarily disjoint from an interval isomorphic to 2431,
and in particular, n > 7.

Let 4, i + 1 and ¢ + 2 be three positions of 7 containing an interval copy of
213, and let j, j + 1, j + 2 and j + 3 be four positions containing an interval
copy of 2431. We will apply the approach of Proposition 5, with ¢ = 1. We
will say that an embedding f € E(x,7) is normal if Img(f) is a superset of
[n)\ {i +2,5+ 2,7+ 3}. Informally, the image of a normal embedding contains
all the positions of 7, except possibly some of the three positions that correspond
to the value 3 of 213 or the values 3 and 1 of 2431 in the chosen interval copies
of 213 and 2431, as shown in Figure 3. In particular, there are eight normal
embeddings.

We now verify the assumptions of Proposition 5. We obviously have N'E(m, 7)
E(m,m). The main task is to verify, for a given A € [1,7) with u[A] # 0, the iden-
tity (2) of Proposition 5, that is, the identity [N Ex(odd, )| = N EA(even, 7)].

Fixa A € [1,7) such that u[\] # 0, and let N'E 5 (x, m) be the set N'Ex(odd, m)U
NE(even, ). We will describe a sign-reversing involution @, on NE,(x, ).

12



Figure 3: The intervals 213 and 2431 in Theorem 12. Normal embeddings may
omit some of the hollow points.

The involution ®, will always be equal to a switch operation A, where the
choice of k will depend on A.

Suppose first that A does not contain any down-adjacency. We claim that
Ajio is an involution on the set N'Ey(x,m). To see this, choose f € NE\(x,7)
and define g = A o(f). It is clear that g is a normal embedding.

To prove that g belongs to NE)(*,7), it remains to show that src(g) con-
tains A, or equivalently, that there is an embedding of X into 7 that is contained
in g. Let h be an embedding of A into 7 which is contained in f. If j4+2 ¢ Img(h),
then h is also contained in g and we are done.

Suppose then that j + 2 € Img(h). This means that j 4+ 1 is not in Img(h),
because 7w has a down-adjacency at positions j + 1 and j 4+ 2, while A has no
down-adjacency. We now modify h in such a way that the element previously
mapped to j + 2 will be mapped to j + 1, while the mapping of the remaining
elements remains unchanged. Let i’ be the embedding obtained from h by this
modification; formally, we have b’ = Aj11(Aj12(h)). Since the two elements
mj+1 and 7,40 form an adjacency, we have src(h') = src(h) = X\. Moreover, h’
is contained in g (recall that g is normal, and therefore Img(g) contains j + 1).
Consequently, g is in NE,(*,7), as claimed.

We now deal with the case when A contains a down-adjacency. Since u[A] #
0, it follows by Theorem 6 that A has no up-adjacency. We distinguish two
subcases, depending on whether A\ contains an interval copy of 2431.

Suppose that A contains an interval copy of 2431. We will prove that in this
case, A;yo is a sign-reversing involution on N'E(x, 7). We begin by observing
that A\ has no interval copy of 213, otherwise A would be a counterexample to
Theorem 12, contradicting the minimality of 7. Fix again an embedding f €
NE\(*,7), and define g = A, 2(f). As in the previous case, g is clearly normal,
and we only need to show that there is an embedding of A into 7 contained in g.
Let h be an embedding of A into 7 contained in f. If i + 2 & Img(h), then h is
contained in g and we are done, so suppose i +2 € Img(h). If at least one of the
two positions ¢ and 7 + 1 belongs to Img(h), then A contains an up-adjacency
or an interval copy of 213, contradicting our assumptions. Therefore, we can
modify A so that the element mapped to i+ 2 is mapped to ¢ instead, obtaining
an embedding of A contained in g and showing that g € N'E,(*, 7).

Finally, suppose that A has no interval copy of 2431. In this case, we prove
that Aj 3 is the required involution on N'Ey(*,7). As in the previous cases,
we fix f € NEx(x,m), define g = A 3(f), and let h be an embedding of A
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contained in f; we again want to modify h into an embedding A contained in g.
Let « be the subpermutation of A formed by those positions that are mapped
into the set J = {j,5 + 1,5 + 2,j + 3} by h. Recall that the positions in J
induce an interval copy of 2431 in w. In particular, @ < 2431, and A has an
interval copy of . We know that a # 2431, since we assume that A\ has no
interval copy of 2431. Also, a # 321, since 321 is an annihilator by Corollary 9,
while p[A] # 0. Finally, « # 231, since A has no up-adjacency. This implies
that @ < 132, and we can modify h so that all the positions originally mapped
into J will get mapped into J \ {j + 3}, obtaining an embedding of A into 7
contained in g.

Having thus verified the assumptions of Proposition 5, we can conclude that
plr] = (=1)I7I=INE(1, 7) = 0, a contradiction. O

The following three results are proved using similar methods to those used
in the proof of Theorem 12.

Theorem 13. The permutations 2143 and 2431 form an annihilator pair.
Theorem 14. The permutations 312 and 23514 form an annihilator pair.
Theorem 15. The permutations 25134 and 23514 form an annihilator pair.

We omit the proofs here, but they can be found in an extended version of
this paper [5].

With the help of the new annihilator pairs established in Theorems 12 to 15,
we are able to present several new examples of annihilators.

Theorem 16. FEach of the three permutations 215463, 236145 and 214653 is a
Mobius annihilator.

Proof. We first present the proof for the permutation 215463. Let o = 215463,
B = aqle] = 14352, B’ = agle] = 21435 and v = aq ¢[¢, €] = 1324. From Figure 4
(left) we see that, after the removal of the annihilators as[e], ayle] and ase], the
interval [1,a] becomes diamond-tipped with core (53, ’,v). Hence by Facts 1
and 2 we have p[l,a] = 0.

Let 7 be a permutation of the form 7;[a] for some 7 and ¢ < |7]|. We will
show, by induction on |7|, that 7 is a zero. The case |7| = 1 has been proved in
the previous paragraph.

Assume that |7| > 1. We will demonstrate that we can remove some zeros
from the interval [1,7] to end up with a diamond-tipped interval with core
(i8], 7:[8'], 7i[7]). Choose a A € [1,7). We can then write A as A = 7/[a"] for
some 7* < 7 and some (possibly empty) a* < «, where 7* has an embedding
into 7 mapping j to i.

If @* is an annihilator, then A is a zero and can be removed. If a* = q,
then |7*| < ||, and by induction, X is a zero and can be removed. In all
the other cases, we have a* < 8 or a* < ', and in particular, A belongs to
(1, % 18] U 1, m[5]).

Suppose now that A is in [1,7[8]] N [1,7;[8]] but not in [1,7;[y]]. Since
A < 71;[B8], we can write it as A = T]-L[ﬂL], for some ¥ < 7 and B < B,
where 7% has an embedding into 7 mapping j to i. Since A £ 7;[y], we know
that S £ ~. This means that % € [1,8] \ [1,~] = {14352,3241,1342,231}.
Similarly, A € [1,7;[8]] \ [1,7i[7]] means that X can be written as A\ = 7ff[3%],
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with B € {21435,2143}. Since A has an interval copy of 8L as well as an
interval copy of 3%, Theorem 6 shows that \ is a zero if 8% € {1342,231}, and
Theorem 13 shows that \ is a zero if 3% € {14352,3241} (using that 3241 is a
diagonal reflection of 2431). Therefore A can be removed.

After the removal described above, [1,7] is transformed into a diamond-
tipped interval, showing that « is a zero.

The arguments for the other two permutations are completely analogous.
For 236145 we have a = 236145, = 25134, 5/ = 23514, v = 2413, gL €
{25134, 1423} and BT € {23514,2314}, and use Theorems 12, 14 and 15. For
214653 we have a = 214653, 8 = 13542, 5’ = 2143, v = 132, BL € {13542, 2431,

1342, 231} and B € {2143,213}, and use Theorems 6, 12 and 13. O
215463 236145 214653
14352 21435 25134 23514 13542

ST TN TN
3241\%&%&24.(/2143 1'73.(/24 1 3\ {ij} 243\1'><13.42/ 2{143
23i .2>13<. ;32 132%231 23i .1>32<. ;13
12\./21 12\./21 12\./21

Figure 4: The three annihilators from Theorem 16, and the posets of their
subpermutations. The figures omit the permutations with opposing adjacencies,
as well as the permutations with an interval copy of a permutation of the form
a®lep.

The annihilator 215463 of Theorem 16 can be written as a sum of two inter-
vals, namely 215463 = 2163241. One might wonder whether the two summands
are in fact an annihilator pair. This, however, is not the case, as evidenced by
the permutation 32417685 = 3241 @ 3241, which is not a Mobius zero. An
analogous example applies to 214653 = 21 & 2431.

In the proof of Theorem 16, it was crucial that for each o € {215463, 236145,
214653}, the interval [1,a] becomes diamond-tipped after the removal of some
annihilators. However, this property alone is not sufficient to make a permuta-
tion a an annihilator. Consider, for instance, the permutation a = 214635. We
may routinely check that by removing some annihilators, the interval [1, a] can
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be made diamond-tipped with core (8 = 13524, 3" = 21435,y = 1324). This
implies that « is a Mobius zero by Facts 1 and 2; however, it does not imply
that « is an annihilator. In fact, « is not an annihilator, as demonstrated by
the permutation

™ = 582741936245 (5, o, B']
=9,17,19,21,18,20,2,12,11, 14,16, 13,15,5,4,7,6,8, 1,22, 3, 10,

whose principal M6bius function is 1, not 0. This example also shows that not
all Mobius zeros are annihilators.

In fact, among permutations of size at most 6, there are up to symmetry
four Mo6bius zeros that are not annihilators. Apart from the permutation 214635
pointed out above, there are these three more examples: 235614, 254613 and
465213. To see that these three permutations are not annihilators, it suffices to
check that for any « € {235614, 254613, 465213}, the permutation 241532 [a] has
non-zero principal Mébius function. We verified, with the help of a computer,
that all the M&bius zeros of size at most 6 that are not symmetries of the four
examples above can be shown to be annihilators by our results. This data is
available at https://iuuk.mff.cuni.cz/~jelinek/mf/zeros.txt.

7 Concluding remarks

Given Theorem 6, it is natural to wonder if we can find a similar result that
applies to a permutation with multiple adjacencies, but no opposing adjacencies.
One difficulty here is that there are permutations that have multiple adjacencies,
and do not have opposing adjacencies, where the principal Mobius function value
is non-zero. As an example, any permutation 7 = 2,1,4,3,...,2k,2k — 1 =
" 21 has p[r] = —1 by the results of Burstein et al. [7, Corollary 3).

Let d,, be the “density of zeros” of the Mobius function, that is, the prob-
ability that u[r] = 0 for a uniformly random permutation 7 of size n. The
asymptotic behaviour of d,, is still elusive.

Problem 17. Does the limit lim,, . d,, exist? And if it does, what is its value?

Corollary 11 implies that liminf,, . d,, > (1 —1/e)? > 0.3995. We have no
upper bound on d,, apart from the trivial bound d,, < 1, but computational data
suggest that simple permutations very often (though not always) have non-zero
principal M6bius function, where a permutation 7 is simple if all its intervals
have size 1 or |r|. Since a random permutation is simple with probability
approaching 1/e? [2], this would suggest that limsup,,_,. d, is at most 1 —
1/e? ~ 0.8647.

Table 1 lists the values of d,, for n = 1,...,13. The values are based on data
supplied by Jason Smith [17] for 1 < n < 9, and calculations performed by the
fourth author. Data files with the values of the principal Mébius function for all
permutations of length twelve or less are available from https://doi.org/10.
21954/0u.rd.7171997.v2. Based on this somewhat limited numeric evidence,
we make the following conjecture:

Conjecture 18. The values d,, are bounded from above by 0.6040.
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o i n d,
1 0.0000 Y
8 0.5942
2 0.0000
9 0.6019
3 0.3333
10 0.6040
4  0.4167
11 0.6034
5 0.4833
12 0.6021
6 0.5361 13  0.6006
7 0.5742

Table 1: The density of Mdbius zeros among permutations of length n, with
n=1...,13.

It is natural to look for further ways to identify Mobius zeros and Mobius
annihilators. Characterizing all the Md&bius zeros would be an ambitious goal,
since p[n] might be zero as a result of “accidental” cancellations with no deeper
structural significance for 7.

An annihilator multiset is a multiset of permutations A = {ay, ..., a,} such
that any permutation 7 that contains disjoint interval copies of the permutations
aq,...,ap has p[r] = 0.

IfA={ay,...,a,} and B = {f1,...,Bmn} are annihilator multisets, then
we say that A contains B if A # B and we can find the elements of B as disjoint
interval copies in the elements of A. An annihilator multiset A is minimal if
there is no annihilator multiset contained in A.

Using Corollary 3 of [7], which implies p[r] = p[r @ 7] for m # 1, it is simple
to show that the permutations in a minimal annihilator multiset are, in fact, all
distinct, and so we can refer to minimal annihilator sets of permutations.

Problem 19. Which permutations are Md&bius annihilators? Are there in-
finitely many minimal annihilator sets that contain just one element, and are
not of the form a ® 1 ¢ 87

It seems likely to us that the proofs of Theorems 12—-15 might be extended
to give several more annihilator pairs, such as (312,235614). However, we do
not see any general pattern in these examples yet.

Problem 20. Are there infinitely many minimal annihilator sets with two ele-
ments?

Problem 21. Are there any minimal annihilator sets with more than two ele-
ments?
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