10,750 research outputs found
Flight characteristics of the AD-1 oblique-wing research aircraft
The AD-1 is a low-speed oblique-wing research airplane. This report reviews the vehicle's basic flight characteristics, including many aerodynamic, stability, and control effects that are unique to an oblique-wing configuration. These effects include the change in sideforce with angle of attack, moment changes with angle of attack and load factor, initial stall on the trailing wing, and inertial coupling caused by a roll-pitch cross product of inertia. An assessment of the handling qualities includes pilot ratings and comments. Ratings were generally satisfactory through 30 deg of wing sweep but degraded with increased sweep. A piloted simulation study indicated that a basic rate feedback control system could be used to improve the handling qualities at higher wing sweeps
In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane
A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data
Multiparticle Interference, GHZ Entanglement, and Full Counting Statistics
We investigate the quantum transport in a generalized N-particle Hanbury
Brown--Twiss setup enclosing magnetic flux, and demonstrate that the Nth-order
cumulant of current cross correlations exhibits Aharonov-Bohm oscillations,
while there is no such oscillation in all the lower-order cumulants. The
multiparticle interference results from the orbital Greenberger-Horne-Zeilinger
entanglement of N indistinguishable particles. For sufficiently strong
Aharonov-Bohm oscillations the generalized Bell inequalities may be violated,
proving the N-particle quantum nonlocality.Comment: 4 pages, 1 figure, published versio
Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane
The AD-1 is a variable-sweep oblique-wing research airplane that exhibits unconventional stability and control characteristics. In this report, flight-determined and predicted stability and control derivatives for the AD-1 airplane are compared. The predictions are based on both wind tunnel and computational results. A final best estimate of derivatives is presented
Spectral sequences of Type Ia supernovae. I. Connecting normal and sub-luminous SN Ia and the presence of unburned carbon
Type Ia supernovae are generally agreed to arise from thermonuclear
explosions of carbon-oxygen white dwarfs. The actual path to explosion,
however, remains elusive, with numerous plausible parent systems and explosion
mechanisms suggested. Observationally, type Ia supernovae have multiple
subclasses, distinguished by their lightcurves and spectra. This raises the
question whether these reflect that multiple mechanisms occur in nature, or
instead that explosions have a large but continuous range of physical
properties. We revisit the idea that normal and 91bg-like supernovae can be
understood as part of a spectral sequence, in which changes in temperature
dominate. Specifically, we find that a single ejecta structure is sufficient to
provide reasonable fits of both the normal type Ia supernova SN~2011fe and the
91bg-like SN~2005bl, provided that the luminosity and thus temperature of the
ejecta are adjusted appropriately. This suggests that the outer layers of the
ejecta are similar, thus providing some support of a common explosion
mechanism. Our spectral sequence also helps to shed light on the conditions
under which carbon can be detected in pre-maximum SN~Ia spectra -- we find that
emission from iron can "fill in" the carbon trough in cool SN~Ia. This may
indicate that the outer layers of the ejecta of events in which carbon is
detected are relatively metal poor compared to events where carbon is not
detected
Type Iax SNe as a few-parameter family
We present direct spectroscopic modeling of five Type Iax supernovae (SNe)
with the one dimensional Monte Carlo radiative transfer code TARDIS. The
abundance tomography technique is used to map the chemical structure and
physical properties of the SN atmosphere. Through via fitting of multiple
spectral epochs with self-consistent ejecta models, we can then constrain the
location of some elements within the ejecta. The synthetic spectra of the
best-fit models are able to reproduce the flux continuum and the main
absorption features in the whole sample. We find that the mass fractions of
IGEs and IMEs show a decreasing trend toward the outer regions of the
atmospheres using density profiles similar to those of deflagration models in
the literature. Oxygen is the only element, which could be dominant at higher
velocities. The stratified abundance structure contradicts the well-mixed
chemical profiles predicted by pure deflagration models. Based on the derived
densities and abundances, a template model atmosphere is created for the SN Iax
class and compared to the observed spectra. Free parameters are the scaling of
the density profile, the velocity shift of the abundance template, and the peak
luminosity. The results of this test support the idea that all SNe Iax can be
described by a similar internal structure, which argues for a common origin of
this class of explosions.Comment: 21 pages, 7 tables, 16 figures, accepted by MNRA
Moments of spectral functions: Monte Carlo evaluation and verification
The subject of the present study is the Monte Carlo path-integral evaluation
of the moments of spectral functions. Such moments can be computed by formal
differentiation of certain estimating functionals that are
infinitely-differentiable against time whenever the potential function is
arbitrarily smooth. Here, I demonstrate that the numerical differentiation of
the estimating functionals can be more successfully implemented by means of
pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial
interpolant), which utilize information from the entire interval . The algorithmic detail that leads to robust numerical
approximations is the fact that the path integral action and not the actual
estimating functional are interpolated. Although the resulting approximation to
the estimating functional is non-linear, the derivatives can be computed from
it in a fast and stable way by contour integration in the complex plane, with
the help of the Cauchy integral formula (e.g., by Lyness' method). An
interesting aspect of the present development is that Hamburger's conditions
for a finite sequence of numbers to be a moment sequence provide the necessary
and sufficient criteria for the computed data to be compatible with the
existence of an inversion algorithm. Finally, the issue of appearance of the
sign problem in the computation of moments, albeit in a milder form than for
other quantities, is addressed.Comment: 13 pages, 2 figure
Role of appetitive phenotype trajectory groups on child body weight during a family-based treatment for children with overweight or obesity.
ObjectiveEmerging evidence suggests that individual appetitive traits may usefully explain patterns of weight loss in behavioral weight loss treatments for children. The objective of this study was to identify trajectories of child appetitive traits and the impact on child weight changes over time.MethodsSecondary data analyses of a randomized noninferiority trial conducted between 2011 and 2015 evaluated children's appetitive traits and weight loss. Children with overweight and obesity (mean age = 10.4; mean BMI z = 2.0; 67% girls; 32% Hispanic) and their parent (mean age = 42.9; mean BMI = 31.9; 87% women; 31% Hispanic) participated in weight loss programs and completed assessments at baseline, 3, 6,12, and 24 months. Repeated assessments of child appetitive traits, including satiety responsiveness, food responsiveness and emotional eating, were used to identify parsimonious grouping of change trajectories. Linear mixed-effects models were used to identify the impact of group trajectory on child BMIz change over time.ResultsOne hundred fifty children and their parent enrolled in the study. The three-group trajectory model was the most parsimonious and included a high satiety responsive group (HighSR; 47.4%), a high food responsive group (HighFR; 34.6%), and a high emotional eating group (HighEE; 18.0%). Children in all trajectories lost weight at approximately the same rate during treatment, however, only the HighSR group maintained their weight loss during follow-ups, while the HighFR and HighEE groups regained weight (adjusted p-value < 0.05).ConclusionsDistinct trajectories of child appetitive traits were associated with differential weight loss maintenance. Identified high-risk subgroups may suggest opportunities for targeted intervention and maintenance programs
- …
