1,212 research outputs found

    Reconciling The Believing Nonbelonger: Readiness To Reach and Receive Lost Sheep

    Get PDF
    This study examines and explains readiness of reconciling with believing nonbelongers from 284 respondents in two categories of 139 systematically selected ELCA congregations in the western United States that received adults during 2001-2005. A concurrent-nested, mixed-method design integrates biblical-theological missio Dei and missio ecclesia foundations with Prochaska’s Transtheoretical Stages of Change and Parshall’s Contextualization Spectrum. Chi-square crosstabulations, simple logistical regression, and Centering Resonance Analyses show: faith of origin, worship attendance growth trend, regional location, population size and growth trend, clergy and lay partnership, and programmatic emphasis has significant effects on the readiness of congregations and respondents to receive the unaffiliated

    Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO2

    No full text
    In nanostructured thin films, photogenerated charge carriers can access the surface more easily than in dense films and thus react more readily. However, the high surface area of these films has also been associated with enhanced recombination losses via surface states. We herein use transient absorption spectroscopy to compare the ultrafast charge carrier kinetics in dense and nanostructured TiO2 films for its two most widely used polymorphs: anatase and rutile. We find that nanostructuring does not enhance recombination rates on ultrafast timescales, indicating that surface state mediated recombination is not a key loss pathway for either TiO2 polymorph. Rutile shows faster, and less intensity-dependent recombination than anatase, which we assign to its higher doping density. For both polymorphs, we conclude that bulk rather than surface recombination is the primary determinant of charge carrier lifetime

    Higher spin quasinormal modes and one-loop determinants in the BTZ black hole

    Full text link
    We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.Comment: 47 page

    Hierarchical Neural Network Architecture In Keyword Spotting

    Get PDF
    Keyword Spotting (KWS) provides the start signal of ASR problem, and thus it is essential to ensure a high recall rate. However, its real-time property requires low computation complexity. This contradiction inspires people to find a suitable model which is small enough to perform well in multi environments. To deal with this contradiction, we implement the Hierarchical Neural Network(HNN), which is proved to be effective in many speech recognition problems. HNN outperforms traditional DNN and CNN even though its model size and computation complexity are slightly less. Also, its simple topology structure makes easy to deploy on any device.Comment: To be submitted in part to IEEE ICASSP 201

    Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum

    Get PDF
    Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown

    General relativistic null-cone evolutions with a high-order scheme

    Full text link
    We present a high-order scheme for solving the full non-linear Einstein equations on characteristic null hypersurfaces using the framework established by Bondi and Sachs. This formalism allows asymptotically flat spaces to be represented on a finite, compactified grid, and is thus ideal for far-field studies of gravitational radiation. We have designed an algorithm based on 4th-order radial integration and finite differencing, and a spectral representation of angular components. The scheme can offer significantly more accuracy with relatively low computational cost compared to previous methods as a result of the higher-order discretization. Based on a newly implemented code, we show that the new numerical scheme remains stable and is convergent at the expected order of accuracy.Comment: 24 pages, 3 figure

    Breakdown of the adiabatic limit in low dimensional gapless systems

    Get PDF
    It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally submitted version

    Lorentz and CPT tests with spin-polarized solids

    Get PDF
    Experiments using macroscopic samples of spin-polarized matter offer exceptional sensitivity to Lorentz and CPT violation in the electron sector. Data from existing experiments with a spin-polarized torsion pendulum provide sensitivity in this sector rivaling that of all other existing experiments and could reveal spontaneous violation of Lorentz symmetry at the Planck scale.Comment: 4 pages, accepted for publication in Physical Review Letter

    Dilemmas of Development and The Reconstruction of Fashion

    Get PDF
    Sustainable development by its nature appears elusive. It seems the more we try to capture and pin it down the more it moves away from us leading us into murkier waters and all manner of contradictions. No more is this felt than in the fashion industry where we are presented with a number of oppositions. The fashion cycle renders styles obsolete before they have worn out generating waste and over-consumptive practices. But it can also bring into the fore practices that have resonance to sustainable development in terms of their location, orientation and consideration for the environment. As studies emerge considering the detrimental environmental impacts of the manufacture and consumption of new clothes, second-hand clothes have become a focus for research endeavours considering how they can be reincorporated into the fashion system and have resonance to an ever ‘fashion’ hungry consumer. This chapter discusses methods for the processing of second-hand clothes into fashionable items and, by drawing on the wealth of ‘waste’ materials through reselling, restyling and remanufacturing, argues that ways of re-appropriating them into a more environmentally focused fashion industry is possible and necessary. It sets out as it hypothesis that the global fashion system has value in its transformative powers but that damaging and exploitative forces are still preventing it from being a force for good. This is due to the nature of the items being produced, the way they are manufactured and how they are ultimately consumed and disposed of
    corecore