360 research outputs found

    Kaon effective mass and energy from a novel chiral SU(3)-symmetric Lagrangian

    Get PDF
    A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Br\"{u}ckner theory. Our numerical results show that the kaon effective mass might be changed only moderately in the nuclear medium due to the highly non-linear density effects. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the effective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry.Comment: 13 pages, Latex, 3 PostScript figures included; replaced by the revised version, to appear in Phys. Rev.

    Biophysically motivated efficient estimation of the spatially isotropic R*2 component from a single gradient‐recalled echo measurement

    Get PDF
    Purpose To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R*2 using a single gradient‐recalled echo (GRE) measurement. Methods The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R*2. The estimated parameters were compared to the classical, mono‐exponential decay model for R*2 in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R*2, it was compared to the established phenomenological method for separating R*2 into orientation‐dependent and ‐independent parts. Results Using the phenomenological method on the classical signal model, the well‐known separation of R*2 into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. Conclusions Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R*2 using only a single GRE measurement

    Fabrication and examination of oxidation resistance of zinc coated copper and brass components by chemical deposition

    Get PDF
    n this work, the structure and the oxidation resistance of Zn deposited Cu and brass metallic components are examined. The deposition was accomplished with pack cementation chemical deposition. The examination of the samples was performed with electron microscopy and X-ray diffraction analysis. It was found that coatings on Cu substrate consist of two layers with different Zn concentrations, while coatings on brass were single layered with almost constant Zn concentration. The presence of distinct Zn—Cu phases was revealed in both cases. The subjection of the as coated samples together with the uncoated substrates in air at 400ÂșC showed that both Zn coated samples have enhanced resistivity in such atmospheres, as most of the coating remained mostly unoxidised, and the substrates were fully protected. On the contrary, the bare substrates appear to have undergone severe damage as brittle oxides were formed on their surface.Publicad

    Hadrons in Dense Resonance-Matter: A Chiral SU(3) Approach

    Get PDF
    A nonlinear chiral SU(3) approach including the spin 3/2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Different methods of mass generation show significant differences in the properties of the spin-3/2 particles and in the nuclear equation of state.Comment: 28 pages, 9 figure

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Cosmological Evolution of a Purely Conical Codimension-2 Brane World

    Get PDF
    We study the cosmological evolution of isotropic matter on an infinitely thin conical codimension-two brane-world. Our analysis is based on the boundary dynamics of a six-dimensional model in the presence of an induced gravity term on the brane and a Gauss-Bonnet term in the bulk. With the assumption that the bulk contains only a cosmological constant Lambda_B, we find that the isotropic evolution of the brane-universe imposes a tuned relation between the energy density and the brane equation of state. The evolution of the system has fixed points (attractors), which correspond to a final state of radiation for Lambda_B=0 and to de Sitter state for Lambda_B>0. Furthermore, considering anisotropic matter on the brane, the tuning of the parameters is lifted, and new regions of the parametric space are available for the cosmological evolution of the brane-universe. The analysis of the dynamics of the system shows that, the isotropic fixed points remain attractors of the system, and for values of Lambda_B which give acceptable cosmological evolution of the equation of state, the line of isotropic tuning is a very weak attractor. The initial conditions, in this case, need to be fine tuned to have an evolution with acceptably small anisotropy.Comment: 20 pages, 4 figures, typo correcte

    Strangeness Enhancement in Heavy Ion Collisions - Evidence for Quark-Gluon-Matter ?

    Get PDF
    The centrality dependence of (multi-)strange hadron abundances is studied for Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The microscopic transport model UrQMD is used for this analysis. The predicted Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A reduction of the constituent quark masses to the current quark masses m_s \sim 230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances the hyperon yields to the experimentally observed high values. Similar results are obtained by an ad hoc overall increase of the color electric field strength (effective string tension of kappa=3 GeV/fm). The enhancement depends strongly on the kinematical cuts. The maximum enhancement is predicted around midrapidity. For Lambda's, strangeness suppression is predicted at projectile/target rapidity. For Omega's, the predicted enhancement can be as large as one order of magnitude. Comparisons of Pb-Pb data to proton induced asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry in the various rapidity distributions of the different (strange) particle species. In p-Pb collisions, strangeness is locally (in rapidity) not conserved. The present comparison to the data of the WA97 and NA49 collaborations clearly supports the suggestion that conventional (free) hadronic scenarios are unable to describe the observed high (anti-)hyperon yields in central collisions. The doubling of the strangeness to nonstrange suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a phase of nearly massless particles.Comment: published version, discussion on strange mesons and new table added, extended discussion on strange baryon yields. Latex, 20 pages, including 5 eps-figure

    Chiral Lagrangian for strange hadronic matter

    Get PDF
    A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L×SU(3)RSU(3)_L \times SU(3)_R σ\sigma-model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. We discuss the difficulties and possibilities to construct a chiral invariant baryon-meson interaction that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the Walecka-model.Comment: Revtex, submitted to Phys. Rev.

    Biophysically motivated efficient estimation of the spatially isotropic R∗2 component from a single gradient-recalled echo measurement

    Get PDF
    Purpose To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R∗2 using a single gradient‐recalled echo (GRE) measurement. Methods The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R∗2. The estimated parameters were compared to the classical, mono‐exponential decay model for R∗2 in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R∗2, it was compared to the established phenomenological method for separating R∗2 into orientation‐dependent and ‐independent parts. Results Using the phenomenological method on the classical signal model, the well‐known separation of R∗2 into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. Conclusions Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R∗2 using only a single GRE measurement
    • 

    corecore