340 research outputs found

    The use of dance in the promotion of mental health in girls: An exploratory study

    Get PDF
    This study had two purposes: (1) to understand how girls experience dance and (2) to examine the idea of using dance as a venue to promote psychological well—being and artistic growth in young children. Fifteen girls between the ages of 3 1/2 and 10 years old participated in a dance program offering dance warm ups, dance techniques, sequential dance steps, pantomime explorations, and creative dance. Methods of data collection included journal notes, video—taped observations, parental interviews, and children\u27s self—reports, drawings, and interviews. The formative evaluation of this dance program indicated that the participants of this small rural community had happy dance experiences. Their levels of self-perception, self- concept, social skills, and motor skills remained high throughout the dance program. They smiled, laughed, and were attentive during the dance classes. The parental interviews and the journal entries indicate the girls enjoyed the dance classes. The girls‘ reports, drawings, and verbal responses confirm the parental and journal observations. In addition, several parents noticed an increase in the self-confidence and a decrease in the shyness of their daughters since they had taken the dance classes. Many parents also reported an increase in creativity and variety of dance movements expressed during their daughters‘ spontaneous dancing at home. These responses give some insight into the girls‘ dance experience. Furthermore, as no overall decreases were found in psychological well—being and as increases were found in artistic growth, I can conclude that these girls experienced a sense of well—being and growth throughout their participation in this dance program. Future studies could utilize a different qualitative methodology or experimental designs to further enhance and define the understanding of how children experience dance and how dance can play a role in the promotion of good health

    Modulated structures in electroconvection in nematic liquid crystals

    Full text link
    Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of a weakly-damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field. The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal rolls which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director.We present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter range where the zig-zag instability is not relevant these solutions are stable attractors, as observed in experiments. We also present two-dimensionally modulated states with and without defects which result from the destabilization of the one-dimensionally modulated structures. Finally, for no (or very small) damping, and away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of defect chains (or bands of defects) separating homogeneous regions of oblique rolls with very small amplitude. These states may provide a model for a class of poorly understood stationary structures observed in various highly-conducting materials ("prechevrons" or "broad domains").Comment: 13 pages, 13 figure

    Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection

    Full text link
    Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (≈\approx hydrodynamic modes) of the underlying physical system, much more than quasi one- and two-dimensional patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the patten dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for three-dimensional pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a two-dimensional one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given.Comment: 29 pages, 2 figure

    Phase synchronization from noisy univariate signals

    Full text link
    We present methods for detecting phase synchronization of two unidirectionally coupled, self-sustained noisy oscillators from a signal of the driven oscillator alone. One method detects soft, another hard phase locking. Both are applied to the problem of detecting phase synchronization in von Karman vortex flow meters.Comment: 4 pages, 4 figure

    1D-confinement of polyiodides inside single-wall carbon nanotubes

    Get PDF
    International audience1D-confinement of polyiodides inside single-wall carbon nanotubes (SWCNT) is investigated. Structural arrangement of iodine species as a function of the SWCNT diameters is studied. Evidence for long range one dimensional ordering of the iodine species is shown by X-ray and electron diffraction experiments independently of the tube diameter. The structure of the confined polyiodides is investigated by X-ray absorption spectroscopy. The confinement influences the local arrangement of the chains. Below a critical diameter Fc of 1 nm, long linear polyiodides are evidenced leading to a weaker charge transfer than for nanotube diameter above Fc. A shortening of the polyiodides is exhibited with the increase of the nanotube diameter leading to a more efficient charge transfer. This point reflects the 1D-confinement of the polyiodides inside the nanotubes

    Structural defects in Hg1−xCdxI2 layers grown on CdTe substrates by vapor phase epitaxy

    Get PDF
    Hg1−xCdxI2 20–25-ÎŒm-thick layers with a uniform composition in the range of x = 0.1–0.2 were grown on CdTe substrates by vapor phase epitaxy (VPE). The growth was carried out using an α-HgI2 polycrystalline source at 200 °C and in the time range of 30–100 h. The layers were studied by scanning electron microscopy (SEM) and high resolution synchrotron x-ray topography (SXRT). The SEM and SXRT images of Hg1−xCdxI2 VPE layers allow one to identify the defects affecting the layer structure. The two main types of structural defects in the layers are subgrain boundaries and densely spaced striations similar to those referred generally to as vapor grown HgI2 bulk crystals. The effect of the growth time on these defects has been analyzed and on the basis of this it has been possible to grow Hg1−xCdxI2 layers with low defect [email protected]

    A Grassmann integral equation

    Full text link
    The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra G_m. A particular type of Grassmann integral equations is explicitly studied for certain low-dimensional Grassmann algebras. The choice of the equation under investigation is motivated by the effective action formalism of (lattice) quantum field theory. In a very general setting, for the Grassmann algebras G_2n, n = 2,3,4, the finite-dimensional analogues of the generating functionals of the Green functions are worked out explicitly by solving a coupled system of nonlinear matrix equations. Finally, by imposing the condition G[{\bar\Psi},{\Psi}] = G_0[{\lambda\bar\Psi}, {\lambda\Psi}] + const., 0<\lambda\in R (\bar\Psi_k, \Psi_k, k=1,...,n, are the generators of the Grassmann algebra G_2n), between the finite-dimensional analogues G_0 and G of the (``classical'') action and effective action functionals, respectively, a special Grassmann integral equation is being established and solved which also is equivalent to a coupled system of nonlinear matrix equations. If \lambda \not= 1, solutions to this Grassmann integral equation exist for n=2 (and consequently, also for any even value of n, specifically, for n=4) but not for n=3. If \lambda=1, the considered Grassmann integral equation has always a solution which corresponds to a Gaussian integral, but remarkably in the case n=4 a further solution is found which corresponds to a non-Gaussian integral. The investigation sheds light on the structures to be met for Grassmann algebras G_2n with arbitrarily chosen n.Comment: 58 pages LaTeX (v2: mainly, minor updates and corrections to the reference section; v3: references [4], [17]-[21], [39], [46], [49]-[54], [61], [64], [139] added

    A pilot study on the effects of a team building process on the perception of work environment in an integrative hospital for neurological rehabilitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurological rehabilitation is one of the most care-intensive challenges in the health care system requiring specialist therapeutic and nursing knowledge. In this descriptive pilot study, we investigated the effects of a team building process on perceived work environment, self-ascribed professional competence, life satisfaction, and client satisfaction in an anthroposophic specialized hospital for neurological rehabilitation. The team-building process consisted of didactic instruction and training in problem-solving, teambuilding and constructive conflict resolution.</p> <p>Methods</p> <p>Seventy seven staff members and 44 patients' relatives were asked to complete a survey that included the Work Environment Scale (WES-10), a Life Satisfaction Scale (BMLSS), the Conviction of Therapeutic Competency (CTC) scale and the Client Satisfaction Questionnaire (CSQ-8). To evaluate the outcome of the team building process, we analyzed changes over time in the WES-10 subscales. Additionally the interrelationship between the WES-10 subscales with other subscales and with sociodemographic parameters like age, gender was calculated by means of a bivariate correlation analysis.</p> <p>Results</p> <p>The team building process had a significant positive effect on perceived work environment in only one area. There was a significant improvement in the ward staffs' perception of their ability to constructively resolve conflicts 3 years after inception of the team building process than there was before inception. However, even in a unit that utilized holistic treatment and nursing in the care of severely disable patients, such care necessitating a very heavy workload, the measurements on the Self Realization, Life Satisfaction and Conviction of Therapeutic Competency scales remained high and unchanged over the three year time period of the study.</p> <p>Conclusions</p> <p>Strategic interventions might be an option to improve interpersonal relationships and finally quality of patient care.</p

    Microbial transformations of selenite by methane-oxidizing bacteria

    Get PDF
    Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology
    • 

    corecore