1,287 research outputs found
Faraday rotation in the MOJAVE blazars: 3C 273 a case study
Radio polarimetric observations of Active Galactic Nuclei can reveal the
magnetic field structure in the parsec-scale jets of these sources. We have
observed the gamma-ray blazar 3C 273 as part of our multi-frequency survey with
the Very Long Baseline Array to study Faraday rotation in a large sample of
jets. Our observations re-confirm the transverse rotation measure gradient in
3C 273. For the first time the gradient is seen to cross zero which is further
indication for a helical magnetic field and spine-sheath structure in the jet.
We believe the difference to previous epochs is due to a different part of the
jet being illuminated in our observations.Comment: 6 pages, 3 figures. To appear in the proceedings of "Beamed and
Unbeamed Gamma-rays from Galaxies", held in Muonio, Finland, April 11-15,
2011. Journal of Physics: Conference Serie
MOJAVE: monitoring of jets in active galactic nuclei with VLBA experiments. V. Multi-epoch VLBA images
We present images from a long-term program (MOJAVE: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observations consist of 2424 15 GHz Very Long Baseline Array (VLBA) images of a complete flux-density-limited sample of 135 AGNs above declination –20°, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample-selection criteria are based on multi-epoch parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well suited for statistical analysis and comparison with studies at other wavelengths. Our multi-epoch and stacked-epoch images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond
Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters
The initial energy transfer in photosynthesis occurs between the
light-harvesting pigments and on ultrafast timescales. We analyze the
carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium
purpuratum as well as in an artificial light-harvesting dyad system by using
transient grating and two-dimensional electronic spectroscopy with 10 fs time
resolution. We find that F\"orster-type models reproduce the experimentally
observed 60 fs transfer times, but overestimate coupling constants, which leads
to a disagreement with both linear absorption and electronic 2D-spectra. We
show that a vibronic model, which treats carotenoid vibrations on both
electronic ground and excited state as part of the system's Hamiltonian,
reproduces all measured quantities. Importantly, the vibronic model presented
here can explain the fast energy transfer rates with only moderate coupling
constants, which are in agreement with structure based calculations.
Counterintuitively, the vibrational levels on the carotenoid electronic ground
state play a central role in the excited state population transfer to
bacteriochlorophyll as the resonance between the donor-acceptor energy gap and
vibrational ground state energies is the physical basis of the ultrafast energy
transfer rates in these systems
Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron II. Observations of 3C 273 at minimum activity
RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R
satellite, launched in 2011, performing Space Very Long Baseline Interferometry
(SVLBI) observations supported by a global ground array of radio telescopes.
With an apogee of about 350 000 km, it is offering for the first time the
possibility to perform {\mu}as-resolution imaging in the cm-band. We present
observations at 22 GHz of 3C 273, performed in 2014, designed to reach a
maximum baseline of approximately nine Earth diameters. Reaching an angular
resolution of 0.3 mas, we study a particularly low-activity state of the
source, and estimate the nuclear region brightness temperature, comparing with
the extreme one detected one year before during the RadioAstron early science
period. We also make use of the VLBA-BU-BLAZAR survey data, at 43 GHz, to study
the kinematics of the jet in a 1.5-year time window. We find that the nuclear
brightness temperature is two orders of magnitude lower than the exceptionally
high value detected in 2013 with RadioAstron at the same frequency (1.4x10^13
K, source-frame), and even one order of magnitude lower than the equipartition
value. The kinematics analysis at 43 GHz shows that a new component was ejected
2 months after the 2013 epoch, visible also in our 22 GHz map presented here.
Consequently this was located upstream of the core during the brightness
temperature peak. These observations confirm that the previously detected
extreme brightness temperature in 3C 273, exceeding the inverse Compton limit,
is a short-lived phenomenon caused by a temporary departure from equipartition.
Thus, the availability of interferometric baselines capable of providing
{\mu}as angular resolution does not systematically imply measured brightness
temperatures over the known physical limits for astrophysical sources.Comment: Accepted for publication in A&
Unprecedented extreme high-frequency radio variability in early-stage active galactic nuclei
We report on the discovery of one of the most extreme cases of high-frequency
radio variability ever measured in active galactic nuclei (AGN), observed on
timescales of days and exhibiting variability amplitudes of three to four
orders of magnitude. These sources, all radio-weak narrow-line Seyfert 1 (NLS1)
galaxies, were discovered some years ago at Aalto University Mets\"ahovi Radio
Observatory (MRO) based on recurring flaring at 37 GHz, strongly indicating the
presence of relativistic jets. In subsequent observations with the Karl G.
Jansky Very Large Array (JVLA) at 1.6, 5.2, and 9.0~GHz no signs of jets were
seen. To determine the cause of their extraordinary behaviour, we observed them
with the JVLA at 10, 15, 22, 33, and 45 GHz, and with the Very Long Baseline
Array (VLBA) at 15 GHz. These observations were complemented with single-dish
monitoring at 37 GHz at MRO, and at 15 GHz at Owens Valley Radio Observatory
(OVRO). Intriguingly, all but one source either have a steep radio spectrum up
to 45 GHz, or were not detected at all. Based on the 37 GHz data the timescales
of the radio flares are a few days, and the derived variability brightness
temperatures and variability Doppler factors comparable to those seen in
blazars. We discuss alternative explanations for their extreme behaviour, but
so far no definite conclusions can be made. These sources exhibit radio
variability at a level rarely, if ever, seen in AGN. They might represent a new
type of jetted AGN, or a new variability phenomenon, and thus deserve our
continued attention.Comment: 31 pages, 37 figures, submitted to MNRA
Spectral evolution of bright NS LMXBs with INTEGRAL: an application of the thermal plus bulk Comptonization model
The aim of this work is to investigate in a physical and quantitative way the
spectral evolution of bright Neutron Star Low-Mass X-ray Binaries (NS LMXBs),
with special regard to the transient hard X-ray tails. We analyzed INTEGRAL
data for five sources (GX 5-1, GX 349+2, GX 13+1, GX 3+1, GX 9+1) and built
broad-band X-ray spectra from JEM-X1 and IBIS/ISGRI data. For each source,
X-ray spectra from different states were fitted with the recently proposed
model compTB. The spectra have been fit with a two-compTB model. In all cases
the first compTB describes the dominant part of the spectrum that we interpret
as thermal Comptonization of soft seed photons (< 1 keV), likely from the
accretion disk, by a 3-5 keV corona. In all cases, this component does not
evolve much in terms of Comptonization efficiency, with the system converging
to thermal equilibrium for increasing accretion rate. The second compTB varies
more dramatically spanning from bulk plus thermal Comptonization of blackbody
seed photons to the blackbody emission alone. These seed photons (R < 12 km,
kT_s > 1 keV), likely from the neutron star and the innermost part of the
system, the Transition Layer, are Comptonized by matter in a converging flow.
The presence and nature of this second compTB component (be it a pure blackbody
or Comptonized) are related to the inner local accretion rate which can
influence the transient behaviour of the hard tail: high values of accretion
rates correspond to an efficient Bulk Comptonization process (bulk parameter
delta > 0) while even higher values of accretion rates suppress the
Comptonization, resulting in simple blackbody emission (delta=0).Comment: 12 pages, 10 figures, accepted for publication in A&
Laboratory-based surveillance of COVID-19 in the Greater Helsinki area, Finland, February-June 2020
Objectives: The aim was to characterise age-and sex-specific severe acute respiratory syndrome coronavirus disease-2 (SARS-CoV-2) RT-PCR sampling frequency and positivity rate in Greater Helsinki area in Finland during February & ndash;June 2020. We also describe the laboratory capacity building for these diagnostics. Methods: Laboratory registry data for altogether 80,791 specimens from 70,517 individuals was analysed. The data included the date of sampling, sex, age and the SARS-CoV-2 RT-PCR test result on specimens collected between 1 February and 15 June 2020. Results: Altogether, 4057/80,791 (5.0%) of the specimens were positive and 3915/70,517 (5.6%) of the individuals were found positive. In all, 37% of specimens were from male and 67% from female subjects. While the number of positive cases was similar in male and female subjects, the positivity rate was significantly higher in male subjects: 7.5% of male and 4.4% of female subjects tested positive. The highest incidence/100,000 was observed in those aged >80 years. The proportion of young adults in positive cases increased in late May 2020. Large dips in testing frequency were observed during every weekend and also during public holidays. Conclusions: Our data suggest that men pursue SARS-CoV-2 testing less frequently than women. Consequently, a subset of coronavirus disease-2019 infections in men may have gone undetected. People sought testing less frequently on weekends and public holidays, and this may also lead to missing of positive cases. The proportion of young adults in positive cases increased towards the end of the study period, which may suggest their returning back to social behaviour with an increased risk of infection. (c) 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ncnd/4.0/).Peer reviewe
INTEGRAL observations of the field of the BL Lacertae object S5~0716+714
We have performed observations of the blazar S5 0716+714 with INTEGRAL on 2-6
April 2004. In the first months of 2004, the source had increased steadily in
optical brightness and had undergone two outbursts. During the latter, occurred
in March, it reached the extreme level of R = 12.1 mag, which triggered our
INTEGRAL program. The target has been detected with IBIS/ISGRI up to 60 keV,
with a flux of ~3 x 10e-11 erg/s/cm2 in the 30-60 keV interval, a factor of ~2
higher than observed by the BeppoSAX PDS in October 2000. In the field of S5
0716+714 we have also detected the Flat Spectrum Radio Quasar S5 0836+710 and
the two Seyfert galaxies Mkn 3 and Mkn 6. Their IBIS/ISGRI spectra are rather
flat, albeit consistent with those measured by BeppoSAX. In the spectrum of Mkn
3 we find some evidence of a break between ~60 and ~100 keV, reminiscent of the
high energy cut-offs observed in other Seyfert galaxies. This is the first
report of INTEGRAL spectra of weak Active Galactic Nuclei.Comment: 5 pages, 5 figures, in press in A&
- …