160 research outputs found

    On residualizing homomorphisms preserving quasiconvexity

    No full text
    H is called a G-subgroup of a hyperbolic group G if for any finite subset M G there exists a homomorphism from G onto a non-elementary hyperbolic group G_1 that is surjective on H and injective on M. In his paper in 1993 A. Ol'shanskii gave a description of all G-subgroups in any given non-elementary hyperbolic group G. Here we show that for the same class of G-subgroups the finiteness assumption on M (under certain natural conditions) can be replaced by an assumption of quasiconvexity

    Proof of the Hyperplane Zeros Conjecture of Lagarias and Wang

    Full text link
    We prove that a real analytic subset of a torus group that is contained in its image under an expanding endomorphism is a finite union of translates of closed subgroups. This confirms the hyperplane zeros conjecture of Lagarias and Wang for real analytic varieties. Our proof uses real analytic geometry, topological dynamics and Fourier analysis.Comment: 25 page

    New generalized fuzzy metrics and fixed point theorem in fuzzy metric space

    Get PDF
    In this paper, in fuzzy metric spaces (in the sense of Kramosil and Michalek (Kibernetika 11:336-344, 1957)) we introduce the concept of a generalized fuzzy metric which is the extension of a fuzzy metric. First, inspired by the ideas of Grabiec (Fuzzy Sets Syst. 125:385-389, 1989), we define a new G-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by M Grabiec). Next, inspired by the ideas of Gregori and Sapena (Fuzzy Sets Syst. 125:245-252, 2002), we define a new GV-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by V Gregori and A Sapena). Moreover, we provide the condition guaranteeing the existence of a fixed point for these single-valued contractions. Next, we show that the generalized pseudodistance J:X×X→[0,∞) (introduced by Włodarczyk and Plebaniak (Appl. Math. Lett. 24:325-328, 2011)) may generate some generalized fuzzy metric NJ on X. The paper includes also the comparison of our results with those existing in the literature

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Normal systems over ANR's, rigid embeddings and nonseparable absorbing sets

    Full text link
    Most of results of Bestvina and Mogilski [\textit{Characterizing certain incomplete infinite-dimensional absolute retracts}, Michigan Math. J. \textbf{33} (1986), 291--313] on strong ZZ-sets in ANR's and absorbing sets is generalized to nonseparable case. It is shown that if an ANR XX is locally homotopy dense embeddable in infinite-dimensional Hilbert manifolds and w(U)=w(X)w(U) = w(X) (where `ww' is the topological weight) for each open nonempty subset UU of XX,then XX itself is homotopy dense embeddable in a Hilbert manifold. It is also demonstrated that whenever XX is an AR, its weak product W(X,)={(xn)n=1Xω: xn=for almost alln}W(X,*) = \{(x_n)_{n=1}^{\infty} \in X^{\omega}:\ x_n = * \textup{for almost all} n\} is homeomorphic to a pre-Hilbert space EE with EΣEE \cong \Sigma E. An intrinsic characterization of manifolds modelled on such pre-Hilbert spaces is given.Comment: 26 page
    corecore