706 research outputs found

    The Precise Determination of Sulfates

    Get PDF
    Experimental evidences are presented to support the necessity of precipitating barium sulfate by the addition of the sulfate to barium chloride rather than in the reverse order as is usually recommended. Factors such as loss due to creeping of the precipitate, temperature and time of digestion, heating of the barium sulfate to constant weight, and others were very carefully controlled. Data are given showing the results obtained using potassium, sodium, ammonium, and hydrogen sulfates. An explanation is offered why the results are low when the usual order of precipitation (BaCl2 to the sulfate) is followed. Microphotographs of barium sulfate obtained by different methods and under varying conditions are given

    The Determination of Oxidation-Reduction Potentials from Equilibrium Data

    Get PDF
    The determination of the oxidation-reduction potentials is more reliable from equilibrium data than from electromotive force data. The potential of the ferric-ferrous electrode was calculated from the experimentally determined equilibrium constant of the reaction: 2Fe (ClO4)3 +2Hg⇔ 2Fe (ClO4)2+Hg2 (ClO4)2 The perchlorates, mercury, and perchloric acid are better suited for the determination of the equilibrium constant than the nitrates, silver and nitric acid employed by A. A. Noyes and Braun (J. Arn. Chem. Soc. 34, 1016, 1912). The true equilibrium constant of the reaction was determined by suitable experimental procedure and subsequent mathematical and graphical analysis

    Optimal Concentration of Light in Turbid Materials

    Full text link
    In turbid materials it is impossible to concentrate light into a focus with conventional optics. Recently it has been shown that the intensity on a dyed probe inside a turbid material can be enhanced by spatially shaping the wave front of light before it enters a turbid medium. Here we show that this enhancement is due to concentration of light energy to a spot much smaller than a wavelength. We focus light on a dyed probe sphere that is hidden under an opaque layer. The light is optimally concentrated to a focus which does not exceed the smallest focal area physically possible by more than 68%. A comparison between the intensity enhancements of both the emission and excitation light supports the conclusion of optimal light concentration.Comment: We corrected an ambiguous description of the focus size in our abstract and text pointed out by an anonymous refere

    Genetic relations between the central and southern Philippine Trench and the Sangihe Trench

    No full text
    International audienceWe surveyed the junction between the central and southern Philippine Trench and the Sangihe Trench near 6øN using swath bathymetry, gravity, and magnetics. These data, along with seismicity, allow us to discuss the genetic relations between these trenches and the forces acting on converging plates. Our final model favors the northern extension of the Halmahera Arc up to 8øN, with three segments offset left-laterally along NW-SE transform faults. Accretion of the northern segment to Mindanao Island 4 to 5 m.y. ago resulted in the failure within the Philippine Sea Plate east of the arc. Initiation of the Philippine Trench between 7øN and 10øN agrees with the maximum recorded depth of the Philippine Trench floor (10,000 m below sea-level) and Philippine Sea slab (200 km). South of 6øN (trench junction), another segment of the arc is being subducted beneath the Sangihe margin, while south of 3øN, the southern segment of the Halmahera Arc is still active. The rapid southward shallowing of the trench floor along the southern Philippine Trench, the type of faulting affecting both sides of the trench, the lack of significant interplate seismicity, and the concentration of the seismicity beneath the Miangas-Talaud Ridge are interpreted as a slowing down of the subduction along this branch of the Philippine Trench compared with the rest of the subduction zone. The Sangihe deformation front has been recognized up to 7øN but seems active only south of 6øN

    Focusing and Compression of Ultrashort Pulses through Scattering Media

    Full text link
    Light scattering in inhomogeneous media induces wavefront distortions which pose an inherent limitation in many optical applications. Examples range from microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible by wavefront shaping techniques. However, when ultrashort pulses are employed scattering induces temporal distortions which hinder their use in nonlinear processes such as in multiphoton microscopy and quantum control experiments. Here we show that correction of both spatial and temporal distortions can be attained by manipulating only the spatial degrees of freedom of the incident wavefront. Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm thick brain tissue, and 1000-fold enhancement of a localized two-photon fluorescence signal. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media

    Performance of Repetitive Tasks Induces Decreased Grip Strength and Increased Fibrogenic Proteins in Skeletal Muscle: Role of Force and Inflammation

    Get PDF
    Background This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis), collagen type I (Col1; a matrix component), and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen), in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs. Methodology/Results To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF), or a high repetition high force handle-pulling task (HRHF), for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF) and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR) analyses of HRNF muscles showed increased expression of Col1 in weeks 3–9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4–6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα. Conclusions/Significance Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were attenuated, at least short-term, by anti-inflammatory treatments

    An Investigation of Chlorine Ligands in Transition-Metal Complexes via 35Cl Solid-State NMR and Density Functional Theory Calculations

    Get PDF
    35Cl solid state NMR (SSNMR), in tandem with 35Cl NQR and density functional theory calculations, was used to characterize chlorine ligands in a series of transition-metal complexes exhibiting structural motifs common to organometallic catalysts. The differentiation of the various chlorine environments was possible, and insight into the origins of the 35Cl electric field gradient tensor parameters was provided. The applicability of 35Cl SSNMR to the study of surface supported transition-metal complexes was demonstrated, validating the use of this technique in the characterization of heterogeneous catalysts

    From music to mathematics and backwards: introducing algebra, topology and category theory into computational musicology

    Get PDF
    International audienceDespite a long historical relationship between mathematics and music, the interest of mathematicians is a recent phenomenon. In contrast to statistical methods and signal-based approaches currently employed in MIR (Music Information Research), the research project described in this paper stresses the necessity of introducing a structural multidisciplinary approach into computational musicology making use of advanced mathematics. It is based on the interplay between three main mathematical disciplines: algebra, topology and category theory. It therefore opens promising perspectives on important prevailing challenges, such as the automatic classification of musical styles or the solution of open mathematical conjectures, asking for new collaborations between mathematicians, computer scientists, musicologists, and composers. Music can in fact occupy a strategic place in the development of mathematics since music-theoretical constructions can be used to solve open mathematical problems. The SMIR project also differs from traditional applications of mathematics to music in aiming to build bridges between different musical genres, ranging from contemporary art music to popular music, including rock, pop, jazz and chanson. Beyond its academic ambition, the project carries an important societal dimension stressing the cultural component of 'mathemusical' research, that naturally resonates with the underlying philosophy of the “Imagine Maths”conference series. The article describes for a general public some of the most promising interdisciplinary research lines of this project

    De la faille alpine à la fosse de Puysegur (Nouvelle-Zélande) : résultats de la campagne de cartographie multifaisceaux GEODYNZ-SUD, Leg 2

    Get PDF
    Le Leg 2 de la campagne GEODYNZ-SUD, menée au SW de la Nouvelle-Zélande, a permis de reconnaître les structures qui accompagnent du Nord au Sud le passage de la faille alpine à la subduction oblique sous la marge du Fiodland, puis à celle naissante, intra-océanique sous la ride de Macquarie. Au Nord et au-dessus de la plaque australienne subductée vers l'Est, un faisceau longitudinal de décrochements converge vers le système transpressif de la faille alpine en découpant la marge continentale. Au Sud, la déformation décrochante est strictement localisée au sommet de la ride de Macquarie. (Résumé d'auteur

    Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging

    Get PDF
    The recovery of objects obscured by scattering is an important goal in imaging and has been approached by exploiting, for example, coherence properties, ballistic photons or penetrating wavelengths. Common methods use scattered light transmitted through an occluding material, although these fail if the occluder is opaque. Light is scattered not only by transmission through objects, but also by multiple reflection from diffuse surfaces in a scene. This reflected light contains information about the scene that becomes mixed by the diffuse reflections before reaching the image sensor. This mixing is difficult to decode using traditional cameras. Here we report the combination of a time-of-flight technique and computational reconstruction algorithms to untangle image information mixed by diffuse reflection. We demonstrate a three-dimensional range camera able to look around a corner using diffusely reflected light that achieves sub-millimetre depth precision and centimetre lateral precision over 40 cmĂ—40 cmĂ—40 cm of hidden space.MIT Media Lab ConsortiumUnited States. Defense Advanced Research Projects Agency. Young Faculty AwardMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004
    • …
    corecore