413 research outputs found

    Multiple Approaches for Individualized Fertility Protective Therapy in Cancer Patients

    Get PDF
    In the last decade, fertility preservation has risen as a major field of interest, creating new interactions between oncologists and gynecologists. Various options, such as cryopreservation of ovarian tissue, have been developed and are currently routinely proposed in many centers. However, many of the options remain experimental and should be offered to patients only after adequate counseling. This paper addresses the efficiency and the potential of the different fertility preservation approaches

    Fertility Preservation in Female Cancer Patients

    Get PDF
    With improved survival rates among cancer patients, fertility preservation is now being recognized as an issue of great importance. There are currently several methods of fertility preservation available in female cancer patients and the options and techniques via assisted reproduction and cryopreservation are increasing, but some are still experimental and continues to be evaluated. The established means of preserving fertility include embryo cryopreservation, gonadal shielding during radiation therapy, ovarian transposition, conservative gynecologic surgery such as radical trachelectomy, donor embryos/oocytes, gestational surrogacy, and adoption. The experimental methods include oocyte cryopreservation, ovarian cryopreservation and transplantation, in vitro maturation, and ovarian suppression. With advances in methods for the preservation of fertility, providing information about risk of infertility and possible options of fertility preservation to all young patients with cancer, and discussing future fertility with them should be also considered as one of the important parts of consultation at the time of cancer diagnosis

    Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A.

    Get PDF
    Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transgenic mouse expressing either a mutated (R94Q) or wild-type form of human mitofusin 2 in neurons to evaluate whether the R94Q mutation was sufficient for inducing a Charcot-Marie-Tooth disease type 2A phenotype. Only mice expressing mitofusin 2(R94Q) developed locomotor impairments and gait defects thus mimicking the Charcot-Marie-Tooth disease type 2A neuropathy. In these animals, the number of mitochondria per axon was significantly increased in the distal part of the sciatic nerve axons with a diameter smaller than 3.5 microm. Importantly, the analysis of R94Q transgenic animals also revealed an age-related shift in the size of myelinated axons leading to an over-representation of axons smaller than 3.5 microm. Together these data suggest a link between an increased number of mitochondria in axons and a shift in axonal size distribution in mitofusin 2(R94Q) transgenic animals that may contribute to their neurological phenotype

    Similarity of slow stripe fluctations between Sr-doped cuprates and oxygen-doped nickelates

    Get PDF
    Stripe fluctuations in La2NiO4.17 have been studied by 139La NMR using the field and temperature dependence of the linewidth and relaxation rates. In the formation process of the stripes the NMR line intensity is maximal below 230K, starts to diminish around 140K, disappears around 50K and recovers at 4K. These results are shown to be consistent with, but completely complementary to neutron measurements, and to be generic for oxygen doped nickelates and underdoped cuprates.Comment: 4 pages including 4 figure

    GUIDANCE: a web server for assessing alignment confidence scores

    Get PDF
    Evaluating the accuracy of multiple sequence alignment (MSA) is critical for virtually every comparative sequence analysis that uses an MSA as input. Here we present the GUIDANCE web-server, a user-friendly, open access tool for the identification of unreliable alignment regions. The web-server accepts as input a set of unaligned sequences. The server aligns the sequences and provides a simple graphic visualization of the confidence score of each column, residue and sequence of an alignment, using a color-coding scheme. The method is generic and the user is allowed to choose the alignment algorithm (ClustalW, MAFFT and PRANK are supported) as well as any type of molecular sequences (nucleotide, protein or codon sequences). The server implements two different algorithms for evaluating confidence scores: (i) the heads-or-tails (HoT) method, which measures alignment uncertainty due to co-optimal solutions; (ii) the GUIDANCE method, which measures the robustness of the alignment to guide-tree uncertainty. The server projects the confidence scores onto the MSA and points to columns and sequences that are unreliably aligned. These can be automatically removed in preparation for downstream analyses. GUIDANCE is freely available for use at http://guidance.tau.ac.il

    Mid-Infrared Conductivity from Mid-Gap States Associated with Charge Stripes

    Full text link
    The optical conductivity of La(2-x)Sr(x)NiO(4) has been interpreted in various ways, but so far the proposed interpretations have neglected the fact that the holes doped into the NiO(2) planes order in diagonal stripes, as established by neutron and X-ray scattering. Here we present a study of optical conductivity in La(2)NiO(4+d) with d=2/15, a material in which the charge stripes order three-dimensionally. We show that the conductivity can be decomposed into two components, a mid-infrared peak that we attribute to transitions from the filled valence band into empty mid-gap states associated with the stripes, and a Drude peak that appears at higher temperatures as carriers are thermally excited into the mid-gap states. The shift of the mid-IR peak to lower energy with increasing temperature is explained in terms of the Franck-Condon effect. The relevance of these results to understanding the optical conductivity in the cuprates is discussed.Comment: final version of paper (minor changes from previous version

    PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery

    Get PDF
    We have developed PVS (Protein Variability Server), a web-based tool that uses several variability metrics to compute the absolute site variability in multiple protein-sequence alignments (MSAs). The variability is then assigned to a user-selected reference sequence consisting of either the first sequence in the alignment or a consensus sequence. Subsequently, PVS performs tasks that are relevant for structure-function studies, such as plotting and visualizing the variability in a relevant 3D-structure. Neatly, PVS also implements some other tasks that are thought to facilitate the design of epitope discovery-driven vaccines against pathogens where sequence variability largely contributes to immune evasion. Thus, PVS can return the conserved fragments in the MSA—as defined by a user-provided variability threshold—and locate them in a relevant 3D-structure. Furthermore, PVS can return a variability-masked sequence, which can be directly submitted to the RANKPEP server for the prediction of conserved T-cell epitopes. PVS is freely available at: http://imed.med.ucm.es/PVS/

    Promoting the use of Motor Function Measure (MFM) as outcome measure in patients with Duchenne Muscular Dystrophy (DMD) treated by corticosteroids

    Get PDF
    ObjectivesAssessing muscle function is a key step in measuring changes and evaluating the outcomes of therapeutic interventions in Duchenne Muscular Dystrophy (DMD). Regarding the large use of corticosteroids (CS) in this population to delay the loss of function, our goal was to monitor the evolution of motor function in patients with DMD treated by corticosteroids (CS) and to study the responsiveness of Motor Function Measure (MFM) in this population in order to provide an estimation of the number of subject needed for a clinical trial.MethodA total of 76 patients with DMD, aged 5.9 to 11.8 years, with at least 6 months of follow-up and 2 MFM were enrolled, 30 in the CS treated group (8±1.62 y) and 46 in the untreated group (7.91±1.50 y).ResultsThe relationship between MFM scores and age was studied in CS treated patients and untreated patients. The evolution of these scores was compared between groups, on a 6-, 12- and 24-month period by calculating slopes of change and standardized response mean. At 6, 12 and 24 months, significant differences in the mean score change were found, for all MFM scores, between CS treated patients and untreated patients. For D1 subscore specifically, at 6 months, the increase is significant in the treated group (11.3±14%/y; SRM 0.8) while a decrease is observed in the untreated group (–17.8±17.7%/y; SRM 1). At 12 and 24 months, D1 subscore stabilized for treated patients but declined significantly for untreated boys (–15.5±15.1%/y; SRM 1 at 12 mo and–18.8±7.1%/y; SRM 2.6 at 24 mo). 21 patients lost the ability to walk during the study: 6 in the CS treated group (25% at 24 months, mean age: 10.74±1.28 y) and 15 in the untreated group (64.71% at 24 months, mean age: 9.20±1.78 y).Discussion and conclusionPatients with DMD treated by CS present a different course of the disease described in this paper using the MFM. Based on these results, an estimation of the number of patients needed for clinical trial could be done

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society
    corecore