520 research outputs found

    Light Engineering of the Polariton Landscape in Semiconductor Microcavities

    Get PDF
    We demonstrate a method to create potential barriers with polarized light beams for polaritons in semiconductor microcavities. The form of the barriers is engineered via the real space shape of a focalised beam on the sample. Their height can be determined by the visibility of the scattering waves generated in a polariton fluid interacting with them. This technique opens up the way to the creation of dynamical potentials and defects of any shape in semiconductor microcavities.Comment: 4 pages, 5 figure

    Compensation of Beer-Lambert attenuation using non-diffracting Bessel beams

    Full text link
    We report on a versatile method to compensate the linear attenuation in a medium, independently of its microscopic origin. The method exploits diffraction-limited Bessel beams and tailored on-axis intensity profiles which are generated using a phase-only spatial light modulator. This technique for compensating one of the most fundamental limiting processes in linear optics is shown to be efficient for a wide range of experimental conditions (modifying the refractive index and the attenuation coefficient). Finally, we explain how this method can be advantageously exploited in applications ranging from bio-imaging light sheet microscopy to quantum memories for future quantum communication networks

    Meteorological controls on snowpack formation and dynamics in the southern Canadian Rocky Mountains

    Get PDF
    Sherpa Romeo green journal. Open access article. Creative Commons Attribution license appliesConsiderable spatial variability in snow properties exists within apparently uniform slopes, often resulting from microscale weather patterns determined by local terrain. Since it is costly to establish abundant weather stations in a region, local lapse rates may offer an alternative for predicting snowpack characteristics. For two Castle Mountain Resort weather stations, we present the 2003–2004 winter season weather and snow profile data and the 1999–2004 winter season lapse rates. A third site was sampled for small-scale spatial variability. Layer thickness, stratigraphy, temperature gradients, crusts, wind drift layers, stability, and settlement were compared between the sites and correlated with temperature, wind, and lapse rates. Average yearly snowfall was 470 cm at the Base and 740 cm at the Upper station. Average daily maximum and minimum temperature lapse rates are 26.1uC km21 and 25.7uC km21 when inversions are removed. Inversions occur mostly at night, adversely affecting lapse rate averages. Lapse rate modes are unaffected and most often 26.3uC km 21. Snowpack spatial variability is ,25% of layer thickness and is controlled by wind and topography. Layer settlement is primarily related to initial snow thickness and wind drift. Snowpacks stabilize with age, unless rain crusts are present, which are important low-force failure horizons.Ye

    Comment on "Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid"

    Get PDF
    In a recent preprint (arXiv:1401.1128v1) Cilibrizzi and co-workers report experiments and simulations showing the scattering of polaritons against a localised obstacle in a semiconductor microcavity. The authors observe in the linear excitation regime the formation of density and phase patterns reminiscent of those expected in the non-linear regime from the nucleation of dark solitons. Based on this observation, they conclude that previous theoretical and experimental reports on dark solitons in a polariton system should be revised. Here we comment why the results from Cilibrizzi et al. take place in a very different regime than previous investigations on dark soliton nucleation and do not reproduce all the signatures of its rich nonlinear phenomenology. First of all, Cilibrizzi et al. consider a particular type of radial excitation that strongly determines the observed patterns, while in previous reports the excitation has a plane-wave profile. Most importantly, the nonlinear relation between phase jump, soliton width and fluid velocity, and the existence of a critical velocity with the time-dependent formation of vortex-antivortex pairs are absent in the linear regime. In previous reports about dark soliton and half-dark soliton nucleation in a polariton fluid, the distinctive dark soliton physics is supported both by theory (analytical and numerical) and experiments (both continuous wave and pulsed excitation).Comment: 4 pages, 2 figure

    Duty cycle tolerant binary gratings for fabricable short period phase masks

    Get PDF
    Wavelength scale 1D binary gratings of rectangular corrugation profile are often used as diffractive elements acting on incident free space waves under different incidence angle, wavelength and polarization. Their optical function is best understood by considering the interplay of the grating modes propagating up and down the periodic walls and slits of the segmented structure. The interference conditions between modes depend on the difference between the effective index of the interfering modes and on their relative amplitude. This difference and relative amplitude depend critically on the ratio between the wall and slit widths which is difficult to control technologically. The condition for a wide tolerance of the effective index difference and for a balanced mode excitation on the wall/slit ratio is found analytically and once for all for a wide class of 1D gratings. It is also found that TE interference elements may exhibit a very wide wall/slit ratio tolerance domain

    Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model

    Get PDF
    Ferrociphenol (Fc-diOH) is a new molecule belonging to the fast-growing family of organometallic anti-cancer drugs. In a previous study, we showed promising in vivo results obtained after the intratumoural subcutaneous administration of the new drug-carrier system Fc-diOH-LNCs on a 9L-glioma model. To further increase the dose of this lipophilic entity, we have created a series of prodrugs of Fc-diOH. The phenol groups were protected by either an acetyl (Fc-diAc) or by the long fatty-acid chain of a palmitate (Fc-diPal). LNCs loaded with Fc-diOH prodrugs have to be activated in situ by enzymatic hydrolysis. We show here that the protection of diphenol groups with palmitoyl results in the loss of Fc-diOH in vitro activity, probably due to a lack of in situ hydrolysis. On the contrary, protection with an acetate group does not affect the strong, in vitro, antiproliferative effect of ferrocifen-loaded-LNCs neither the reduction of tumour volume observed on an ectopic model, confirming that acetate is easily cleaved by cell hydrolases. Moreover, the cytostatic activity of Fc-diOH-LNCs is confirmed on an orthotopic glioma model since the difference in survival time between the infusion of 0.36 mg/rat Fc-diOH-LNCs and blank LNCs is statistically significant. By using LNCs or Labrafac to carry the drug, a dose-effect ranging from 0.005 to 2.5mg of Fc-diOH per animal can be evidenced

    Re-municipalization of public services: trend or hype?

    Get PDF
    Re-municipalization is part of a broader set of reverse privatization reforms. We argue the term re-municipalization lacks conceptual clarity and often confuses municipal level reversals from national ones, new service delivery from reversals, and mixed market positions (such as corporatization) from full public control. This conceptual confusion makes measurement of re-municipalization difficult. While more case studies are being discovered, studies based on quantitative time series do not show re-municipalization as an increasing trend. Much case study based research argues re-municipalization is politically transformative, but quantitative research generally finds re-municipalization to be part of a pragmatic market management process, a position confirmed by the papers in this special issue
    • 

    corecore