1,069 research outputs found
Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal gas
Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal
gas is studied in the framework of an exact analytic approach. For an initial
symmetric three-velocity distribution, the problem can be solved exactly and it
is shown that different regimes exist depending on the initial fraction of
particles at rest. Extension to the case of a n-velocity distribution is
discussed.Comment: 19 pages, latex, uses Revtex macro
Search for universality in one-dimensional ballistic annihilation kinetics
We study the kinetics of ballistic annihilation for a one-dimensional ideal
gas with continuous velocity distribution. A dynamical scaling theory for the
long time behavior of the system is derived. Its validity is supported by
extensive numerical simulations for several velocity distributions. This leads
us to the conjecture that all the continuous velocity distributions \phi(v)
which are symmetric, regular and such that \phi(0) does not vanish, are
attracted in the long time regime towards the same Gaussian distribution and
thus belong to the same universality class. Moreover, it is found that the
particle density decays as n(t)~t^{-\alpha}, with \alpha=0.785 +/- 0.005.Comment: 8 pages, needs multicol, epsf and revtex. 8 postscript figures
included. Submitted to Phys. Rev. E. Also avaiable at
http://mykonos.unige.ch/~rey/publi.html#Secon
Kinetics of ballistic annihilation and branching
We consider a one-dimensional model consisting of an assembly of two-velocity
particles moving freely between collisions. When two particles meet, they
instantaneously annihilate each other and disappear from the system. Moreover
each moving particle can spontaneously generate an offspring having the same
velocity as its mother with probability 1-q. This model is solved analytically
in mean-field approximation and studied by numerical simulations. It is found
that for q=1/2 the system exhibits a dynamical phase transition. For q<1/2, the
slow dynamics of the system is governed by the coarsening of clusters of
particles having the same velocities, while for q>1/2 the system relaxes
rapidly towards its stationary state characterized by a distribution of small
cluster sizes.Comment: 10 pages, 11 figures, uses multicol, epic, eepic and eepicemu. Also
avaiable at http://mykonos.unige.ch/~rey/pubt.htm
Exact Solution of Two-Species Ballistic Annihilation with General Pair-Reaction Probability
The reaction process is modelled for ballistic reactants on an
infinite line with particle velocities and and initially
segregated conditions, i.e. all A particles to the left and all B particles to
the right of the origin. Previous, models of ballistic annihilation have
particles that always react on contact, i.e. pair-reaction probability .
The evolution of such systems are wholly determined by the initial distribution
of particles and therefore do not have a stochastic dynamics. However, in this
paper the generalisation is made to , allowing particles to pass through
each other without necessarily reacting. In this way, the A and B particle
domains overlap to form a fluctuating, finite-sized reaction zone where the
product C is created. Fluctuations are also included in the currents of A and B
particles entering the overlap region, thereby inducing a stochastic motion of
the reaction zone as a whole. These two types of fluctuations, in the reactions
and particle currents, are characterised by the `intrinsic reaction rate', seen
in a single system, and the `extrinsic reaction rate', seen in an average over
many systems. The intrinsic and extrinsic behaviours are examined and compared
to the case of isotropically diffusing reactants.Comment: 22 pages, 2 figures, typos correcte
Application of the Gillespie algorithm to a granular intruder particle
We show how the Gillespie algorithm, originally developed to describe coupled
chemical reactions, can be used to perform numerical simulations of a granular
intruder particle colliding with thermalized bath particles. The algorithm
generates a sequence of collision ``events'' separated by variable time
intervals. As input, it requires the position-dependent flux of bath particles
at each point on the surface of the intruder particle. We validate the method
by applying it to a one-dimensional system for which the exact solution of the
homogeneous Boltzmann equation is known and investigate the case where the bath
particle velocity distribution has algebraic tails. We also present an
application to a granular needle in bath of point particles where we
demonstrate the presence of correlations between the translational and
rotational degrees of freedom of the intruder particle. The relationship
between the Gillespie algorithm and the commonly used Direct Simulation Monte
Carlo (DSMC) method is also discussed.Comment: 13 pages, 8 figures, to be published in J. Phys. A Math. Ge
Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets
Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures
Avaliação das cultivares BRS Estância RR, BRS Tordilha RR e duas linhagens de soja em Sistema Tardio de Semeadura (STS).
bitstream/item/62619/1/2011comunicadotecnicoonline307.pd
- …
