380 research outputs found

    Listen Up: A case study examination of focused listening

    Get PDF
    Today, most everyday music listening is an accompaniment to other activities; it is far less common that listening is someone’s primary activity, receiving most of their attention. In this article, we present a case study, Listen Up, run by Indigo Project, a mental health organization in Sydney, Australia, in which we explored relationships between participants’ responses to the experience and their demographics and styles of music engagement. A sample of 187 Australian residents (aged 20–64 years) who attended Listen Up completed a survey measuring music engagement; emotional responses to the experience; perceived outcomes of the session; pre- and post-measures of stress, mood, and anxiety; and free-text responses to questions concerning their experiences of listening mindfully and any thoughts or feelings that arose during the session. Participants experienced an increased mood and decreased levels of stress and arousal after taking part in Listen Up. Their focused-listening experiences were not simply characterized by enjoying the music; rather, the emotions evoked were varied and complex. We characterized their emotional responses as negative, positive, evocative and expressive, and sad; in addition, participants characterized their own experiences as a cathartic journey resolving into a positive, peaceful, and calm state. Reported outcomes of participating in Listen Up included experiences described as being emotionally challenging, therapeutic, and physically uncomfortable. An affective music engagement style was positively associated with evocative and expressive and sad emotional experiences, and therapeutic outcomes. As a focused-listening experience, Listen Up provides participants with the opportunity not only to attend to music but also to reflect on and process their personal thoughts and feelings. This research provides evidence for the emotional and mental health benefits of focused music listening, such that, focused listening reflects opportunities for strong experiences with music in today’s listening landscape

    Structure of a bacterial type IV secretion core complex at subnanometre resolution

    Get PDF
    Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived

    Surgical correction of pyelonephritis caused by multidrug-resistant Escherichia coli in a dairy cow

    Get PDF
    A four-year-old red Holstein Friesian cow was admitted to the clinic with fever and milk drop. Blood analysis revealed the presence of a chronic infection, and the diagnosis of pyelonephritis of the right kidney was made after repeated ultrasound examinations. The animal was treated with procaine benzylpenicillin, sulfadoxine trimethoprim, oxytetracycline and enrofloxacine but this therapy was not successful. Nephrectomy was performed after the left kidney proved to have a normal function. The removed right kidney was greatly enlarged and filled with pus. Escherichia coli was isolated from the kidney. The strain was multidrug-resistant, including resistance to aminopenicillins, streptomycin, sulfonamides and trimethoprim. The cow was treated with amoxicillin and clavulanic acid after the operation. Postoperatively, an abscess developed and a tube drain was placed during a second surgery to enable daily rinsing with a chlorhexidine solution. After a postoperative care period of two months, the animal was sent back to the farm, where it returned to an acceptable level of milk production. This case demonstrates that with basic surgical skills, a good preparation and knowledge of anatomy, nephrectomy is attainable for a first-opinion veterinarian, with an acceptable economic prognosis for the farmer

    Evidence of a high incidence of subclinically affected calves in a herd of cattle with fatal cases of Bovine Neonatal Pancytopenia (BNP).

    Get PDF
    BACKGROUND: Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by bone marrow trilineage hypoplasia, mediated by ingestion of alloantibodies in colostrum. Suspected subclinical forms of BNP have been reported, suggesting that observed clinical cases may not represent the full extent of the disease. However to date there are no objective data available on the incidence of subclinical disease or its temporal distribution. This study aimed to 1) ascertain whether subclinical BNP occurs and, if so, to determine the incidence on an affected farm and 2) determine whether there is evidence of temporal clustering of BNP cases on this farm. To achieve these aims, haematological screening of calves born on the farm during one calving season was carried out, utilising blood samples collected at defined ages. These data were then analysed in comparison to data from both known BNP-free control animals and histopathologically confirmed BNP cases. An ordinal logistic regression model was used to create a composite haematology score to predict the probabilities of calves being normal, based on their haematology measurements at 10–14 days old. RESULTS: This study revealed that 15% (21 of 139) of the clinically normal calves on this farm had profoundly abnormal haematology (<5% chance of being normal) and could be defined as affected by subclinical BNP. Together with clinical BNP cases, this gave the study farm a BNP incidence of 18%. Calves with BNP were found to be distributed throughout the calving period, with no clustering, and no significant differences in the date of birth of cases or subclinical cases were found compared to the rest of the calves. This study did not find any evidence of increased mortality or increased time from birth to sale in subclinical BNP calves but, as the study only involved a single farm and adverse effects may be determined by other inter-current diseases it remains possible that subclinical BNP has a detrimental impact on the health and productivity of calves under certain circumstances. CONCLUSIONS: Subclinical BNP was found to occur at a high incidence in a herd of cattle with fatal cases of BNP

    Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies

    Get PDF
    Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer–monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer–monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations

    Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11

    No full text
    The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins

    Human Cytomegalovirus: detection of congenital and perinatal infection in Argentina

    Get PDF
    BACKGROUND: Human cytomegalovirus (CMV) is one of the most commonly found agents of congenital infections. Primary maternal infection is associated with risk of symptomatic congenital diseases, and high morbidity is frequently associated with very low birth weight. Neonates with asymptomatic infection develop various sequelae during infancy. This is the first Argentine study performed in neonates with congenital and postnatal HCMV infection. The purpose of this study was to evaluate the performance of the polymerase chain reaction (PCR) technique with different pairs of primers, to detect cytomegalovirus isolated in tissue cultures and directly in urine and dried blood spot (DBS) specimens. Results were compared with IgM detection. METHODS: The study was performed between 1999 and 2001 on routine samples in the Laboratory. A total of 61 urine and 56 serum samples were selected from 61 newborns/infants, 33 patients whose samples were analyzed during the first two to three weeks of life were considered congenital infections; the remaining 28 patients whose samples were taken later than the third week were grouped as perinatal infections, although only in 4 the perinatal transmission of infection was determined unequivocally Cytomegalovirus diagnosis was made by isolating the virus from urine samples in human foreskin fibroblast cells. Three different primer pairs directed to IE, LA and gB genes were used for the HCMV PCR assay in viral isolates. Subsequently, PCR and nested PCR (nPCR) assays with gB primers were performed directly in urine and in 11 samples of dried blood spot (DBS) on Guthrie Card, these results were then compared with serology. RESULTS: The main clinical manifestations of the 33 patients with congenital infection were purpura, jaundice, hepatomegaly and anaemia. Three patients presented low birth weight as single symptom, 10, intracranial calcifications, and 2, kidney failure. In the 28 patients grouped as with perinatal infection, anaemia, hepatosplenomegaly and enzymatic alteration were predominant, and 4 patients were HIV positive. The primers used to amplify the gB region had a PCR positivity rate of 100%, whereas those that amplified IE and LA regions had a PCR positivity rate of 54% and 61% respectively, in CMV isolates. Amplification by PCR of urine samples (with no previous DNA extraction), using primers for the gB region, detected 34/61 positive samples. Out of the 33 samples from patients with congenital infection, 24 (73%) were positive. When nPCR was used in these samples, all were positive, whereas in the remaining 28 patients, two negative cases were found. Cytomegalovirus DNA detection in 11 samples was also carried out in DBS: 7 DBS samples were positive and 4 were negative. CONCLUSIONS: Primers directed to the gB fragment region were the best choice for the detection of CMV DNA in positive isolates. In congenital infections, direct PCR in urine was positive in a high percentage (73%) of samples; however, in patients grouped as with perinatal infection only 36% of the cases were positive. With n-PCR, total sample positivity reached 97%. PCR technique performed in DBS allowed identifying congenital infection in four patients and to be confirmed in 3. These results show the value of nPCR for the detection of all cases of CMV infection. The assay offers the advantage that it may be performed within the normal working day and provides reliable results in a much shorter time frame than that required for either traditional tissue culture or the shell-viral assay

    Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site.

    Get PDF
    Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening. In this study, we developed nanobodies (single domain antibodies), which are functionally active as allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites partially overlap with those of small molecule modulators, including a vestibule binding site that is not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and extend drug design possibilities in pLGICs with an accessible vestibule site

    Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages

    Get PDF
    AbstractNanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118–131 and 137–140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation
    corecore