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Abstract Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in

fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote

from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening.

In this study, we developed nanobodies (single domain antibodies), which are functionally active as

allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC

bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites

partially overlap with those of small molecule modulators, including a vestibule binding site that is

not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the

vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of

modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and

extend drug design possibilities in pLGICs with an accessible vestibule site.

Introduction
In 1965, Monod, Wyman and Changeux postulated the model of allosteric modulation in proteins

(Monod et al., 1965). According to this model, proteins exist in two possible conformational states,

the tensed (T) or relaxed state (R). The substrate typically has a high affinity for the T state. In multi-

subunit proteins, all subunits undergo a concerted transition from the R to the T state upon sub-

strate binding. The equilibrium can be shifted to the R or the T state through a ligand that binds at a

site that is different from the substrate binding site, in other words an allosteric site.

Changeux subsequently devoted much of his scientific career to the study of allosteric proteins,

with specific attention paid to the nicotinic acetylcholine receptor (nAChR). This protein is a ligand-

gated ion channel (LGIC) and thus in effect has no substrate, but the principle of allosteric modula-

tion is similar in that binding of acetylcholine (ACh) shifts the thermodynamic equilibrium from a

closed channel state to an open channel state through binding to a site ~50 Å away from the channel
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gate. The nAChR is a member of a superfamily of pentameric LGICs (pLGICs), which play major roles

in fast synaptic transmission in the central and peripheral nervous systems, and are the site of action

of many therapeutic drugs.

Structures of these proteins have been elucidated over the last decade and several nAChR struc-

tures are now available for the heteromeric a4b2 and a3b4 nAChRs (Morales-Perez et al., 2016;

Walsh et al., 2018; Gharpure et al., 2019), as well as other members of the pLGIC family, including

the 5-HT3 serotonin receptor (Hassaine et al., 2014; Polovinkin et al., 2018; Basak et al., 2018),

the glycine receptor (Du et al., 2015; Huang et al., 2015), the GABAA receptor (Zhu et al., 2018;

Phulera et al., 2018; Laverty et al., 2019; Masiulis et al., 2019; Miller and Aricescu, 2014), the

glutamate-gated chloride channel from C. elegans GluCl (Hibbs and Gouaux, 2011; Althoff et al.,

2014) and the prokaryote channels ELIC (Hilf and Dutzler, 2008) and GLIC (Hilf and Dutzler, 2009;

Bocquet et al., 2009). Historically, crucial structural insight into the class of nicotinic receptors was

derived from cryo-electron microscopic structures of the nAChRs from the electric organ of Torpedo

(Miyazawa et al., 2003; Unwin, 2005) and X-ray crystal structures of the acetylcholine binding pro-

tein (AChBP; found in certain snails and worms), which is homologous to the extracellular ligand

binding domain (LBD) of nAChRs (Brejc et al., 2001).

The concept of allosteric modulation is now also more broadly applied to understand the mode

of action of certain drugs, called allosteric modulators, which bind at a site that is different from the

neurotransmitter binding site, but which can alter energy barriers between multiple conformational

states (Bertrand and Gopalakrishnan, 2007). For example in the case of pLGICs, positive allosteric

modulators (PAMs) of the nAChR can facilitate a transition from a resting to an activated state, thus

enhancing the agonist-evoked response. In contrast, negative allosteric modulators (NAMs) hinder

such a transition, thus diminishing the agonist response. From a drug development perspective,

PAMs or NAMs are highly attractive as they finely tune receptor activation without affecting the nor-

mal fluctuations of neurotransmitter release at the synapse. One of the most extensively described

PAMs used in the clinic are the benzodiazepines, which act on GABAA receptors and are widely pre-

scribed as hypnotics, anxiolytics, anti-epileptics or muscle relaxants. Important insights into the

molecular recognition of these modulators have been revealed by high-resolution structural data

(Zhu et al., 2018; Phulera et al., 2018; Laverty et al., 2019; Masiulis et al., 2019; Miller and Ari-

cescu, 2014).

With the availability of a growing amount of structural data for these receptors, a diverse array of

modulatory molecules have been identified, many of which bind at distinct allosteric binding sites,

including general anesthetics (Nury et al., 2011; Sauguet et al., 2013; Spurny et al., 2013), neuro-

steroids (Miller et al., 2017; Laverty et al., 2017; Chen et al., 2018), lipids (Zhu et al., 2018;

Laverty et al., 2019), antiparasitics (Hibbs and Gouaux, 2011; Althoff et al., 2014), and many

others (Nys et al., 2016). Detailed investigation of allosteric sites not only brings further knowledge

about the receptor functionality but also uncovers novel drug target sites. However, our current

understanding of this multi-site mechanism of allosteric modulation in pLGICs is still incomplete.

In this study, we used complementary structural and functional approaches to expand our under-

standing of the molecular mechanism of allosteric modulation in pLGICs. Using the prokaryote ELIC

channel as a model, we explored the potential of nanobodies (single chain antibodies) as allosteric

modulators. We discovered functionally active nanobodies, which act either as a PAM or NAM on

ELIC, and determined co-crystal structures to elucidate the nanobody interactions with ELIC. One of

the structures reveals an allosteric binding site located near the vestibule of the extracellular ligand-

binding domain. Comparison of conservation and divergence in this site in different prokaryotic and

eukaryotic receptors suggests a mechanism for achieving subtype-selective allosteric modulation

across the receptor superfamily. Using cysteine-scanning mutagenesis and electrophysiological

recordings, we show the vestibule site can also be targeted for modulation of the human 5-HT3A
receptor as a proof of principle relevant to other eukaryotic receptors.

Results and discussion

Identification of nanobodies active as allosteric modulators on ELIC
In this study, we took advantage of nanobodies, which are high-affinity single chain antibodies

derived from llamas; they have been widely employed to facilitate structural studies (Manglik et al.,
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2017) and also hold potential as therapeutics against many possible targets. A first example, caplaci-

zumab (Cabilivi), has recently reached the market (Scully et al., 2019). Using the prokaryote ion

channel ELIC as a model system, we investigated whether nanobodies could be selected with allo-

steric modulator activity on ligand-gated ion channels. We expressed ELIC channels in Xenopus

oocytes and employed automated electrophysiological recordings to characterize a panel of more

than 20 different ELIC nanobodies. While none of the nanobodies had any functional effect on ELIC

when applied alone, we found that co-application with the agonist GABA evoked a response that

broadly falls into three categories. One type of nanobody enhanced the agonist-evoked response,

while a second type of nanobody diminished the agonist-evoked response, and the third type had

little to no effect. From these classes, we selected several enhancers (PAMs) and inhibitors (NAMs)

for a detailed electrophysiological characterization as potential allosteric modulators. In parallel, we

conducted X-ray diffraction screening of ELIC plus nanobody co-crystals for structural elucidation.

From this selection, we obtained a PAM-active nanobody (PAM-Nb) as well as another NAM-active

nanobody (NAM-Nb) and determined their structures bound to ELIC by X-ray crystallography.

Co-application of the agonist GABA with a range of PAM-Nb concentrations demonstrates that

PAM-Nb enhances the agonist response (Figure 1a) with a pEC50-value of 5.37 ± 0.03 (EC50: 4.2

mM) and Imax = 257 ± 14% (mean values ± SEM, n = 8). In contrast, co-application of a range of

NAM-Nb concentrations demonstrates that NAM-Nb decreases the agonist response (Figure 1b)

with a pIC50-value of 6.89 ± 0.03 (IC50: 0.13 mM) and Imax = 34 ± 2% (n = 6). Unlike competitive

antagonists, which fully inhibit the agonist response at saturating concentrations, the inhibition of

NAM-Nb levels off at 70% of the response with GABA alone, consistent with the mode of action of

certain NAMs. We further investigated the effects of PAM-Nb and NAM-Nb on the GABA concen-

tration-activation curve and obtained results that support their effects as positive and negative allo-

steric modulators (Figure 1—figure supplement 1). These results demonstrate that functionally

active nanobodies can be developed against the ligand-gated ion channel ELIC.

Crystal structures of ELIC in complex with a PAM- or NAM-type
nanobody
To gain insight into the structural recognition of positive (PAM-Nb) or negative (NAM-Nb) allosteric

modulators, we solved X-ray crystal structures of ELIC in complex with the PAM-Nb or NAM-Nb,

respectively (Supplementary file 1). The structure of ELIC in complex with the PAM-Nb was deter-

mined at a resolution of 2.59 Å, and reveals five PAM-Nb molecules bound to a single pentameric

ELIC channel (Figure 1c,e). Each PAM-Nb binds at an intrasubunit site in the ELIC extracellular

ligand binding domain. When viewed from the top along the fivefold symmetry axis, the nanobodies

extend outward and the structure resembles a five-bladed propeller (Figure 1c). The structure of

ELIC in complex with NAM-Nb was determined at a resolution of 3.25 Å and is structurally distinct

from the complex with PAM-Nb: instead of five Nb molecules bound to the ELIC pentamer, here a

single NAM-Nb molecule is bound to the ELIC pentamer (Figure 1d,f). The NAM-Nb binds at the

channel vestibule entrance and near to the N-terminal a-helix of a single ELIC subunit, and is ori-

ented in such a manner that only a single nanobody molecule can bind at this interface, as the core

of the nanobody sterically hinders access to the four other sites (Figure 1d,f).

A more detailed analysis of the interaction interface between both nanobodies and ELIC reveals

remarkable features (Figure 2). The PAM-Nb binds to the extracellular ligand-binding domain and

forms extensive interactions through the complementarity determining region CDR1 (residues S25-

I33) of the nanobody (Figure 2a). The tip of the finger of this loop region wedges in between the

ELIC b8- and b9-strand, forming a distinct anti-parallel b-sheet interaction with the b8-strand. The

CDR1 loop region points toward an allosteric binding site previously identified in a chimera of the

human a7 nAChR and the acetylcholine binding protein, a7-AChBP (Li et al., 2011) (see complex

with fragment molecule CU2017, pdb code 5oui) (Figure 2a). In other words, the PAM-Nb binds to

a site in ELIC that corresponds to a functionally important allosteric site in the human a7 nAChR,

consistent with its function as an allosteric modulator.

The mode of interaction of the NAM-Nb with ELIC is distinct from the PAM-Nb (Figure 2b). The

interaction interface is remarkable in that a unique a-helical region within the CDR3-region (P104-

L110) forms the interface with ELIC. This a-helical region is positioned perpendicularly upon the a’1-

helix in ELIC (N60-N69) and forms the outer rim of an allosteric binding site previously identified as

the vestibule binding site (Spurny et al., 2012). This site is also the target for the benzodiazepine
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Figure 1. Nanobodies active as allosteric modulators and structures bound to the ELIC channel. (a,

b) Electrophysiological recordings of ELIC activated by the agonist GABA and in the presence of increasing

concentrations of PAM-Nb (a, green) or NAM-Nb (b, red). The curve represents a fit to the Hill equation to the

normalized current responses. Circles represent averaged data with standard errors. (c,d) X-ray crystal structures of

ELIC bound by PAM-Nb (c) or NAM-Nb (d). The cartoon representation shows a top-down view onto the ELIC

pentamer along the fivefold axis (blue). (e,f) Side views from c,d). The dashed lines indicate the presumed location

of the membrane boundaries.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Electrophysiological recordings of ELIC with PAM-Nb and NAM-Nb.

Figure supplement 1. The effect of PAM-Nb and NAM-Nb on the GABA concentration-activation curve.

Figure 1 continued on next page
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flurazepam, which acts as a positive allosteric modulator on ELIC (Spurny et al., 2012) (Figure 2b

inset). This site is distinct from the high-affinity benzodiazepine site at the a/g subunit interface

(Masiulis et al., 2019). Similar to the PAM-Nb, it is interesting to observe that the allosteric binding

Figure 1 continued

Figure supplement 1—source data 1. ELIC concentration-activation curves in the presence of PAM-Nb and

NAM-Nb.

Figure supplement 2. Simulated annealing omit map for PAM-Nb ELIC structure.

Figure supplement 3. Simulated annealing omit map for NAM-Nb ELIC structure.

Figure 2. Detailed nanobody interaction sites in ELIC and channel pore analysis. (a) A detailed view of the

interaction between PAM-Nb (green) and a single ELIC subunit (blue). The binding site for PAM-Nb overlaps with

a known allosteric binding site, in a related pLGIC, for a small molecule fragment called CU2017, shown as

spheres (carbon yellow, nitrogen blue) (Delbart et al., 2018; pdb code 5oui). (b) Detailed view of the interaction

between NAM-Nb (red) and a single ELIC subunit (blue). The binding site for NAM-Nb involves a region which

borders a known allosteric binding site for flurazepam in ELIC (Spurny et al., 2012; pdb code 2yoe). (c,d) Analysis

of the ELIC channel pore radius for PAM-Nb, NAM-Nb bound structures and references structures.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Analysis of pore radius profiles.

Figure supplement 1. Detailed atomic interactions between PAM-Nb and ELIC, compared to those between

CU2017 (a NAM molecule) and a7-AChBP (Delbart et al., 2018).

Figure supplement 1—source data 1. List of amino acid interactions in the PAM-Nb bound ELIC structure versus

CU2017 bound alpha7-AChBP structure.

Figure supplement 2. Detailed atomic interactions between NAM-Nb and ELIC, compared to those between

flurazepam (a PAM molecule) and ELIC (Spurny et al., 2012).

Figure supplement 2—source data 1. List of amino acid interactions in the NAM-Nb bound ELIC structure versus

flurazepam bound ELIC structure.

Figure supplement 3. Analysis of pore radius profiles through lateral fenestrations located at subunit interfaces in

ELIC and the b3 GABAAR (Miller and Aricescu, 2014).
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site of the NAM-Nb is adjacent to a previously identified binding site for a small molecule allosteric

modulator. Remarkably, in each case, the nanobody has the opposite functional effect of the small

molecule at the same site. The PAM-Nb acts as a positive modulator, whereas the CU2017 fragment

acts as a negative modulator at the b8-b9 site. Conversely, the NAM-Nb acts as a negative modula-

tor, whereas flurazepam acts as a positive modulator at the vestibule site. This result demonstrates

that the same allosteric site can be targeted both by a PAM or NAM, and that its functional action

likely depends on defined side chain interactions. This is in agreement with previous pharmacologi-

cal studies, which have shown that a substitution as small as a methylation of an aromatic ring in a

small molecule modulator can alter the functional profile from a PAM to a NAM of the a7 nAChR

(Gill-Thind et al., 2015). To further explore positive versus negative modulation, the atomic interac-

tions of the PAM-Nb or NAM-Nb with ELIC are compared with those formed by the small molecules

CU2017 or flurazepam, respectively (see Figure 2—figure supplements 1–2). The results from this

analysis reveal some residues that are uniquely targeted in the PAM-Nb versus the CU2017 complex,

which could be responsible for positive versus negative allosteric modulation (Figure 2—figure sup-

plement 1). Similarly in the NAM-Nb versus the flurazepam complex, adjacent subsets of residues in

the vestibule site are targeted by the different molecules, again indicating that distinct residues

within the same region play a role in negative versus positive allosteric modulation (Figure 2—figure

supplement 2).

The pores of both Nb complexes resemble previous structures of ELIC, with narrow constriction

points at the 9’, 16’, and 20’ positions (Hilf and Dutzler, 2008), suggesting that the channels are in

non-conducting conformations (Figure 2c,d). This closed state is structurally distinct from the puta-

tive desensitized state of the nAChR, whose primary gate lies at the cytoplasmic end at the �1’ posi-

tion (Morales-Perez et al., 2016; Gharpure et al., 2019). Further analysis of the central channel axis

of the NAM-Nb complex reveals a partial blockade of the extracellular vestibule entrance by the

nanobody, resulting in a radius profile comparable to the 6’ pore constriction (Figure 2c,d). This par-

tial constriction of the ion permeation pathway could possibly explain why the NAM-Nb only partially

inhibits GABA-induced currents. Alternatively, it is possible that in ELIC alternate pathways exist for

ion entry through lateral fenestrations located at subunit interfaces, as seen in other members of the

pLGIC family (Zhu et al., 2018; Miller and Aricescu, 2014) (Figure 2—figure supplement 3).

Finally, NAM-Nb binding could restrict flexibility in the extracellular domain (ECD), thereby limiting a

transition from a closed to a conductive conformation (Sauguet et al., 2014).

Subtype-dependent vestibule site access in different prokaryote and
eukaryote receptors
To further investigate the possible conservation of the vestibule binding site in different prokaryote

and eukaryote pLGICs, we performed a systematic analysis of the vestibule site architecture in all

currently available pLGIC structures. The results from this analysis show that the outer rim of the ves-

tibule site, which corresponds to residues N60-F95 in ELIC, can adopt one of three possible confor-

mations (Figure 3).

In certain structures, we observe that the stretch of amino acids between the b4- and b5-strands

resembles the shape of the Greek letter W, for example in the a4 nAChR subunit (Morales-

Perez et al., 2016; Walsh et al., 2018), and therefore this region is termed the W loop (Hu et al.,

2018). In Figure 3a, the outer rim of the vestibule site in the a4 nAChR is shown in blue (from the

helix to the b5-strand) and the W loop in red. The tip of the W loop can either point into the vestibule

as in the a4 nAChR subunit (Morales-Perez et al., 2016; Walsh et al., 2018), which we call the W-in

conformation (Figure 3a), or the tip of the W loop can point outward, which we call the W-out con-

formation, for example in the a1 GlyR subunit (Du et al., 2015) (outer rim shown in blue, W-out in

green, Figure 3b). Importantly, in both of these conformations access to the vestibule site is

occluded. In the W-in conformation, the tip of the W loop prevents access to the vestibule site of its

own a4 nAChR-subunit (Figure 3a,d), whereas in the W-out conformation vestibule access is pre-

vented by the tip of the W-out loop of its neighboring a1 GlyR (-) subunit (Figure 3b,e). In addition

to the W-in and W-out conformations, we observe a third possible conformation in which the W loop

is stretched, for example in the 5-HT3AR (Hassaine et al., 2014) (Figure 3c) and ELIC, and creates

an accessible vestibule site (Figure 3f). Consequently, we term this conformation the W-open confor-

mation (W-open is shown in magenta, Figure 3c,f).
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A systematic comparison of the W loop conformations demonstrates that the different pLGIC sub-

families group into defined categories (reference structures are listed in Supplementary file 2). First,

we observe that all currently known anionic receptor structures adopt the W-out conformation

(Figure 3h). This implies that the vestibule access is occluded in all of these receptors, for example

in the homomeric a1 GlyR (Du et al., 2015), a3 GlyR (Huang et al., 2015), or GluCl (Hibbs and

Gouaux, 2011) as well as the heteropentameric a1bg2 GABAARs (Zhu et al., 2018; Phulera et al.,

2018; Laverty et al., 2019) and homopentameric b3 GABAAR (Miller and Aricescu, 2014). The W-

out loop sequence is strongly conserved in these receptors, with a His residue and Asn residue at

either end of the W loop and a Thr at the tip (not conserved in GluCl). We also observe that in all

these cases the W loop is preceded by a stretch of amino acids that forms an additional b-strand,

which we call the b4’-strand, as it also follows the b4-strand. The b4’-strand contains a well con-

served start Lys residue, which is present in GlyRs, GABAARs and GluCl. The sequence conservation

in these two regions suggests an important functional role. In contrast with anionic receptors, we

observe that certain cationic receptors can adopt either the W-in or W-open conformation. However,

none of the cationic receptors adopt the W-out conformation. Only 5 nAChR subunits adopt the W-in

conformation, namely the a2 nAChR (Kouvatsos et al., 2016), a4 and b2 nAChR-subunits (Morales-

Perez et al., 2016; Walsh et al., 2018) and a3 and b4 nAChR-subunits (Gharpure et al., 2019). This

implies that the heteropentameric a4b2 and a3b4 nAChRs adopt an all-subunit-occluded vestibule

site conformation. The stretch of amino acids that form the W-in conformation is also well conserved

with a Gly-Val on either end and an aromatic residue (Phe/Tyr) at the tip, again suggesting an impor-

tant functional role. In contrast, all other nAChR subunits (Dellisanti et al., 2007; Zour et al., 2014),

Figure 3. Distinct conformations of the vestibule site in pentameric ligand-gated ion channels. (a–c) Yellow ribbon

representation of a single subunit ligand binding domain. Part of the vestibule site (shown in blue cartoon), called

the W-loop, adopts three distinct conformations in different pLGICs: the W-in (red, (a), W-out (green, (b) and W-

open conformation (magenta, (c). (d-f) Insets show a zoom of the W-loop in surface representation to illustrate

occluded vestibule site access in the W-in and W-out conformations, compared to an accessible vestibule site in

the W-open conformation. (g–i). Sequence alignment of the W-loop and neighboring residues in pLGICs for which

structures have been elucidated.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. B-factor analysis of the W-loop compared to other regions within each structure.
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including the Torpedo nAChR (Miyazawa et al., 2003), as well as the 5-HT3AR (Hassaine et al.,

2014), snail AChBPs (Brejc et al., 2001; Celie et al., 2005), prokaryote GLIC (Bocquet et al., 2009;

Hilf and Dutzler, 2009) and ELIC adopt the W-open conformation. The sequence of amino acids

forming the W-open loop is less conserved, except for the position +two following the b4-sheet,

which is a Asn in all receptors except 5-HT3AR. Important to note is that the W-open loop in the a9

nAChR (Zour et al., 2014) is disordered in the apo state (pdb code 4d01), but not in the antagonist

(MLA)-bound state (pdb code 4uxu). This raises the intriguing possibility that the W loop is conforma-

tionally flexible and could control access to the vestibule site. A comprehensive analysis of all pLGIC

structures available to date further revealed that in certain structures the average B-factors per resi-

due, which are used as an indicator of vibrational movement, are enhanced in the W-loop relative to

other parts of the structure (Figure 3—figure supplement 1). Some of the most striking examples

are the W-in loop of the a3 subunit in the a3b4 nAChR (pdb code 6pv7, desensitized state)

(Gharpure et al., 2019), the W-out loop in POPC-bound GluCl (pdb code 4tnw, lipid-modulated

state) (Althoff et al., 2014) and the W-open loop in GLIC T25’A (pdb code 4lmj, liganded closed

state) (Gonzalez-Gutierrez et al., 2013). These examples also represent possible intermediate or

end states of the gating cycle, suggesting that the W-loop could show enhanced movement during

the gating reaction. A functional role of the W-loop in gating of other pLGIC was demonstrated in

earlier studies using a photochemical proteolysis approach of the W-loop in GABAARs (Hanek et al.,

2010), incorporation of flexible glycine linkers in GABAARs (Venkatachalan and Czajkowski, 2012)

and rate-equilibrium free energy relationship analysis of W-loop mutants of muscle nAChRs

(Chakrapani et al., 2003).

Together, the results from this analysis demonstrate that different receptor subtypes adopt a dif-

ferent W loop conformation, with the W-open conformation creating an accessible vestibule site,

whereas the W-in and W-out conformations occlude vestibule site access. Additionally, in heteropen-

tameric GABAA receptors the vestibule is occupied by N-linked glycan chains (Zhu et al., 2018;

Phulera et al., 2018; Laverty et al., 2019), thus creating an additional level of restriction on vesti-

bule site access in these and possibly other pLGICs. Our analyses provide new opportunities for

drug design of allosteric molecules that have subtype-specific pharmacology (due to low sequence

conservation compared to the orthosteric site), based on vestibule site access.

Cysteine-scanning mutagenesis in the vestibule site of the human 5-
HT3A receptor
Based on our observations that the vestibule site in ELIC is the target for positive allosteric modula-

tors such as the benzodiazepine flurazepam (Spurny et al., 2012) as well as negative allosteric mod-

ulators such as the NAM-nanobody described in this study, we further investigated whether the

mechanism of vestibule site modulation is functionally conserved in eukaryote receptors. We chose

the 5-HT3AR as a prototype receptor since it has a clear W-open vestibule conformation and its struc-

ture (Hassaine et al., 2014) as well as functional and pharmacological properties (Lummis, 2012)

are well described. We then employed the substituted cysteine accessibility method (SCAM)

(Karlin and Akabas, 1998) to investigate the functional effects on channel gating before and after

modification of cysteines in the 5-HT3AR vestibule site with the cysteine-reactive reagent MTSEA-bio-

tin, which is approximately the size of a small molecule modulator such as flurazepam. We chose res-

idues on the outer rim of the vestibule site, T112 (top) and F125 (bottom), respectively, as well as

residues deeper into the vestibule site, N147, K149 and L151 on the b6-strand and Y86 on the b2-

strand (Figure 4b). It is interesting to note that N147, K149 and L151 are located on the opposite

side of the b-strand to the loop E residues (Q146 and Y148), while Y86 is on the opposite side of the

b-strand to the loop D residues (W85 and R87); both of these regions are functionally important con-

tributors to the neurotransmitter binding site (Hassaine et al., 2014). Residue P111, which points

away from the vestibule site, was included as a negative control.

Representative current traces of channel responses to increasing concentrations of serotonin (5-

HT) are shown in Figure 4a for the L151C mutant before and after modification with MTSEA-biotin.

The channel responses are drastically increased after cysteine modification, which is caused by a

more than 10-fold increase of the maximal current response (Imax) of the concentration-activation

curve after MTSEA-biotin modification as well as a shift of the EC50-value to lower concentrations

(Figure 4a,c) (pEC50: 4.01 ± 0.03, n = 5 (EC50: 98 mM) versus pEC50: 4.96 ± 0.04, n = 5 (EC50: 11

mM)), indicating a strong PAM-effect at this position (p<0.0001, mean values ± SEM). The L151C
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mutation alone causes a ~50 fold increase of the EC50-value compared to wild type (EC5098 mM ver-

sus 1.8 mM), suggesting that this mutation impacts function, possibly because L151 contributes to a

hydrophobic patch in the center of the subunit (it is <4 Å from I100 and L131), and this, or the muta-

tion itself, could affect the adjacent Cys-loop and loop B. Modification of this residue with MTSEA-

biotin appears to change the EC50 (11 mM) back toward wild-type value (1.8 mM). Mutants T112C

and K149C also showed a lesser but significant decrease of the EC50-value after MTSEA-biotin,

namely 6.7 mM (pEC50: 5.17 ± 0.02, n = 4) versus 2.9 mM (pEC50: 5.53 ± 0.02, n = 4) for T112C

(Figure 3d) (p<0.0001) and 6.2 mM (pEC50: 5.21 ± 0.05, n = 7) versus 2.1 mM (pEC50: 5.69 ± 0.11,

n = 7) for K149C (Figure 3e) (p=0.005). Although neither of these mutants displayed an increase of

Imax as in the L151C mutant, the leftward shift of the concentration-activation curve is also consistent

with a PAM-effect at these positions. No significant differences were observed for current responses

before and after MTSEA-biotin for Y86C, F125C and N147C or the negative control, P111C (see

Supplementary file 3), suggesting modification of these residues does not place the MTSEA-biotin

in an appropriate position to act as a modulator, although it is also possible it did not react here.

Together, these results demonstrate that general perturbation of this area via a drug binding or a

mutation can alter receptor activation and that allosteric modulation via the vestibule binding site is

functionally conserved between ELIC and 5-HT3A receptors. The evolutionary distance between

these receptors, combined with previous work, suggests that this mechanism of modulation possibly

also extends to other pLGIC members. In support of this hypothesis the functional importance of the

vestibule site in channel modulation is now emerging from a wide range of different structural stud-

ies on prokaryote channels, demonstrating ELIC modulation by flurazepam (Spurny et al., 2012) or

nanobodies (this study), 4-bromocinnamate modulation of the prokaryote homolog sTeLIC

(Hu et al., 2018), and acetate binding in GLIC (Fourati et al., 2015). Additionally, the vestibule site

Figure 4. Allosteric modulation of the 5-HT3A receptor through chemical modification of engineered cysteines in

the vestibule site. (a) Example traces of agonist-evoked channel responses of the L151C 5-HT3AR mutant before

and after modification with MTSEA-biotin show potentiation after cysteine modification. (b) Location of L151C and

other engineered cysteine mutants in this study, shown in ball and stick representation. (c) Concentration-

activation curves before and after modification with MTSEA-biotin are a Hill curve fit for the recordings shown in

(a) as well as additional data for T112C (d) and K149C. (c–e) Each of these three mutants reveal a leftward shift of

the curve upon cysteine modification, consistent with a positive allosteric effect. In the case of L151C, this effect is

combined with a large increase of the maximal current response.

The online version of this article includes the following source data for figure 4:

Source data 1. Electrophysiological recordings of 5-HT3R mutants before and after treatment with MTSEA-biotin.
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has been identified as the site of modulation in different eukaryote channels using various

approaches, including 5-HT3AR modulation by cysteine-scanning mutagenesis (this study), a7 nAChR

modulation using a fragment-based screening approach (Spurny et al., 2015; Delbart et al., 2018),

and Zn2+-mediated inhibition of the a1 GlyR (Miller et al., 2008).

Conclusion
In conclusion, we demonstrate here that functionally active nanobodies can be developed for the

ligand-gated ion channel ELIC. Functional characterization demonstrates that nanobodies can act as

positive or negative allosteric modulators on this channel. Previous structural studies on the mouse

5-HT3 receptor have also identified a nanobody with an inhibitory mode of action (Hassaine et al.,

2014), while a nanobody active as a positive allosteric modulator was recently developed for the

human a1b3g2 GABAA receptor (Miller et al., 2018). These results indicate that functionally active

nanobodies can be developed for different prokaryote and eukaryote ligand-gated ion channels and

that they are useful tools for structural studies.

Crystal structures reveal that ELIC nanobodies can interact via distinct epitopes, including accessi-

ble parts of allosteric binding sites previously discovered in the extracellular ligand-binding domain

and bound by small molecules. One potentially attractive site for further development of allosteric

modulators is the vestibule site, which can be targeted not only with nanobodies or small molecules

in ELIC, but also by chemical modification of engineered cysteines as demonstrated in the human 5-

HT3A receptor. The vestibule site offers opportunities to further develop both positive and negative

modulators, as well as to exploit subtype-specific access to certain receptors. These results pave the

way for the future development of novel therapeutics that can modulate channel activity in pLGIC-

related disorders. An attractive path would be to expand the currently available repertoire of thera-

peutics with pharmacologically active nanobodies against human pLGICs.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Gene Erwinia ligand-gated
ion channel (ELIC)

Synthetic gene
from Genscript

UniProt
P0C7B7

Gene Human
5-hydroxytryptamine
receptor 3A (5-HT3A R)

John Peters
laboratory (Belelli et al., 1995)

GenBank NM_000869

Cell line C43 E. coli strain Lucigen #60446

Cell line WK6 E. coli strain Zell and Fritz, 1987

Cell line TG1 E. coli strain Lucigen #60502

Antibody PAM-Nb Nanobody obtained by
immunizing an adult llama
glama with recombinant ELIC
protein. PAM-Nb was used
at 1–30 mM concentration in
electrophysiology experiments.
In protein crystals the PAM-Nb
concentration is > 1 mM.

Antibody NAM-Nb Nanobody obtained by
immunizing an adult llama
glama with recombinant ELIC
protein. NAM-Nb was used
at 0.03–3 mM concentration in
electrophysiology experiments.
In protein crystals the NAM-Nb
concentration is > 1 mM.

Recombinant
DNA reagent

pGEM-HE Liman et al. (1992)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pMESy4 GenBank KF415192

Sequence-
based reagent

P111C oligonucleotide
forward and reverse

5’-caccaagttgtccatcTG
cacggacagcatctgg-3’
5’-ccagatgctgtccgtgCA
gatggacaacttggtg- 3’

Sequence-
based reagent

T112C oligonucleotide
forward and reverse

5’-caagttgtccatccccTG
Cgacagcatctgggtcc-3’
5’-ggacccagatgctgtcGC
Aggggatggacaacttg-3’

Sequence-
based reagent

N147C oligonucleotide
forward and reverse

5’-caaggcgaagttcagTG
ctacaagccccttcagg-3’
5’-cctgaaggggcttgtagC
Actgaacttcgccttg-3’

Sequence-
based reagent

K149C oligonucleotide
forward and reverse

5’-ggcgaagttcagaactac
TGCccccttcaggtggtga-3’
5’- tcaccacctgaaggggGC
Agtagttctgaacttcgcc-3’

Sequence-
based reagent

L151C oligonucleotide
forward and reverse

5’- gttcagaactacaagccc
TGtcaggtggtgactgc-3’
5’-gcagtcaccacctgaCAg
ggcttgtagttctgaac-3’

Sequence-
based reagent

Y86C oligonucleotide
forward and reverse

5’- ctggtaccggcagtGct
ggactgatgag-3’
5’-ctcatcagtccagCactg
ccggtaccag-3’

Sequence-
based reagent

F125C oligonucleotide
forward and reverse

5’-ggacattctcatcaatgagt
Gcgtggatgtggg-3’
5’-cccacatccacgCactcatt
gatgagaatgtcc-3’

Sequence-
based reagent

Primer for nanobody
library generation
CALL001

Pardon et al. (2014) 50-GTCCTGGCTGCTC
TTCTACAAGG-30

Sequence-
based reagent

Primer for nanobody
library generation
CALL002

Pardon et al. (2014) 50-GGT ACGTGCTGT
TGAACTGTTCC-30

Sequence-
based reagent

Primer for nanobody
library generation
VHH-Back

Pardon et al. (2014) 50-GATGTGCAGCTGCAG
GAGTCTGGRGGAGG-30(PstI)

Sequence-
based reagent

Primer for nanobody
library generation
VHH-For

Pardon et al. (2014) 50-CTAGTGCGGCCGCTGG
AGACGGTGACCTGGGT-30(Eco91I)

Sequence-
based reagent

Primer for nanobody
library analysis
MP57

Pardon et al. (2014) 50-TTATGCTTCCGGCTC GTATG-30

Peptide,
recombinant protein

Primer for nanobody
library analysis
GIII

Pardon et al. (2014) 50-CCACAGACAGCCCTCATAG-30

Commercial
assay or kit

mMessage mMachine
T7 Transcription kit

ThermoFisher Scientific #AM1344

Commercial
assay or kit

Ni Sepharose
6 Fast Flow resin

GE Healthcare #17531802

Commercial
assay or kit

Superdex 75
10/300 GL column

GE Healthcare # 17-5174-01

Commercial
assay or kit

Superdex 200
Increase 10/300 GL

GE Healthcare # 28990944

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

QuikChange
Site-Directed
Mutagenesis Kit

Agilent # 200518

Chemical
compound, drug

5-HT creatinine
sulphate

Sigma-Aldrich #S2805

Chemical
compound, drug

MTSEA-biotin Biotium #90064

Chemical
compound, drug

GABA Sigma-Aldrich #A2129

Chemical
compound, drug

E. coli total lipid extract Avanti Polar Lipids #100500P

Chemical
compound, drug

Anagrade
n-undecyl-b-D-
maltoside (UDM)

Anatrace #U300

Software, algorithm GraphPad Prism
Software v4.03

RRID:SCR_002798

Software, algorithm CCP4 Winn et al., 2011

Software, algorithm STARANISO Tickle et al., 2018
http://staraniso.globalphasing.org

Software, algorithm XDS Kabsch, 2010

Software, algorithm Coot Emsley et al. (2010)

Software, algorithm Buster Smart et al. (2012)

Software, algorithm PDB-REDO Joosten et al. (2014)

Software, algorithm MolProbity Chen et al. (2010)

Software, algorithm PyMOL v2.3.0 Schrödinger RRID:SCR_000305

Software, algorithm HOLE Smart et al. (1996)

Software, algorithm CAVER Jurcik et al. (2018)

Software, algorithm PHENIX Adams et al. (2010)

Software, algorithm HiClamp Multi
Channel Systems

Production of nanobodies against ELIC
A llama was immunized with 2 mg in total of purified wild type ELIC protein over a period of 6 weeks

using a previously established protocol (Pardon et al., 2014). Briefly, from the anti-coagulated blood

of the immunized llama, lymphocytes were used to prepare cDNA. This cDNA served as a template

to amplify the open reading frames coding for the variable domains of the heavy-chain only antibod-

ies, also called nanobodies. The PCR fragments were ligated into the pMESy4 phage display vector

and transformed in E. coli TG1 cells. A nanobody library of 1.1 � 108 transformants was obtained.

For the discovery of ELIC-specific nanobodies, wild-type ELIC was solid phase coated directly on

plates and phages were recovered by limited trypsinization. After two rounds of selection, periplas-

mic extracts were made and subjected to ELISA screens, seven different families were confirmed by

sequence analysis. All clones were produced and purified as previously described (Pardon et al.,

2014).
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Nanobody expression and purification
A series of nanobodies were individually expressed in the periplasm of E. coli strain WK6, which was

grown in TB media supplemented with 0.1 mg/ml carbenicillin, 0.1% glucose and 2 mM MgCl2 to an

absorbance A600 ~0.7 at 37˚C. The culture was induced with 1 mM isopropyl b-D-1-thiogalactopyra-

noside (IPTG) and incubated in an orbital shaker overnight at 28˚C. Cells were harvested by centrifu-

gation, resuspended in TES buffer (200 mM TRIS, pH 8.0; 0.5 mM EDTA; 500 mM sucrose

supplemented with 40 mM imidazole) and incubated for 1 hr. To this fraction four times diluted TES

buffer was added and incubated for 1 hr. This fraction was cleared by centrifugation at 10,000 g.

The supernatant was incubated with Ni Sepharose 6 Fast Flow resin (GE Healthcare) and incubated

for 1 hr at room temperature. The beads were washed with buffer containing 20 mM TRIS pH 8.0,

300 mM NaCl and 40 mM imidazole. Protein was eluted with the same buffer supplemented with

300 mM imidazole. The eluted protein was concentrated to less than 1 ml on a 3 kDa cut-off Vivaspin

concentrating column (Sartorius) and further purified on a Superdex 75 10/300 GL column (GE

Healthcare) equilibrated with 10 mM Na-phosphate (pH 8.0) and 150 mM NaCl. Peak fractions corre-

sponding to nanobody were pooled and spin-concentrated to ~50 mg/ml.

Automated voltage-clamp recordings of ELIC
For expression of ELIC in Xenopus oocytes, we used the pGEM-HE expression plasmid (Liman et al.,

1992) containing the signal sequence of the human a7 nAChR followed by the mature ELIC

sequence, as previously described (Spurny et al., 2012). After plasmid linearization with NheI,

capped mRNA was transcribed in vitro using the mMESSAGE mMACHINE T7 transcription kit (Ther-

moFisher). 2 ng of mRNA per oocyte was injected into the cytosol of stage V and VI oocytes using

the Roboinject automated injection system (Multi Channel Systems). Oocyte preparations and injec-

tions were done using standard procedures (Knoflach et al., 2018). Injected oocytes were incubated

in ND96-solution containing 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 2 mM MgCl2 and 5 mM HEPES,

pH 7.4, supplemented with 50 mg/L gentamicin sulfate. One to five days after injection, electrophys-

iological recordings were performed at room temperature by automated two-electrode voltage

clamp with the HiClamp apparatus (Multi Channel Systems). Cells were superfused with standard

OR2 solution containing 82.5 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mg/L BSA and

5 mM HEPES buffered at pH 7.4. Cells were held at a fixed potential of �80 mV throughout the

experiment. Agonist-evoked current responses were obtained by perfusing oocytes with a range of

GABA concentrations in OR2 solution. Different nanobodies diluted into OR2 solution were tested

at a range of concentrations by pre-incubation with nanobody alone and followed by a co-applica-

tion of nanobody with 5 mM GABA. Data acquired with the HiClamp were analyzed using the manu-

facturer’s software (Multi Channel Systems). Concentration-activation curves were fitted with the

empirical Hill equation as previously described (Spurny et al., 2012). Data are presented as the

mean ± standard error of the mean (SEM) with the raw data points overlaid as a dot plot in the rele-

vant figures.

ELIC purification and crystallization of ELIC-nanobody complexes
Purified ELIC protein was produced as previously described, but with minor modifications

(Spurny et al., 2012). In brief, the ELIC expression plasmid was transformed into the C43 E. coli

strain and cells were grown in LB medium. Protein expression was induced with 200 mM isopropyl b-

D-1-thiogalactopyranoside (IPTG) and incubated in an orbital shaker at 20˚C overnight. After cell

lysis, membranes were collected by ultracentrifugation at 125,000 x g and solubilized with 2% (w/v)

anagrade n-undecyl-b-D-maltoside (UDM, Anatrace) at 4˚C overnight. The cleared supernatant con-

taining the solubilized MBP-ELIC fusion protein was purified by affinity chromatography on amylose

resin (New England Biolabs). Column-bound ELIC was cleaved off by 3CV protease in the presence

of 1 mM EDTA + 1 mM DTT at 4˚C overnight. A final purification step was carried out on a Superdex

200 Increase 10/300 GL column (GE Healthcare) equilibrated with buffer containing 10 mM Na-phos-

phate pH 8.0, 150 mM NaCl, and 0.15% n-undecyl-b-D-maltoside (UDM, Anatrace). Peak fractions

containing pentameric ELIC were pooled, concentrated to ~10 mg/mL and relipidated with 0.5 mg/

mL E. coli lipids (Avanti Polar Lipids). Nanobodies were added at a 20% molar excess calculated for

monomers and incubated at room temperature 2 hr prior to setting up crystallization screens with a

Mosquito liquid handling robot (TTP Labtech). Crystals for the ELIC complex with PAM-Nb grew at
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room temperature in the presence of 0.1 M GABA, 0.2 M Ca(OAc)2, 0.1 M MES buffer pH 6.5% and

10% PEG8000. Crystals for the ELIC complex with NAM-Nb grew at room temperature in the pres-

ence of 0.1 M Na2SO4, 0.1 M bis-trispropane pH 8.5% and 10% PEG3350. Crystals were harvested

after adding cryo-protectant containing mother liquor gradually supplemented with up to 25% glyc-

erol in 5% increments. Crystals were then plunged into liquid nitrogen and stored in a dewar for

transport to the synchrotron.

Structure determination of ELIC-nanobody complexes
Diffraction data for the ELIC+PAM-Nb structure were collected at the PROXIMA 1 beamline of the

SOLEIL synchrotron (Gif-sur-Yvette, France). Diffraction data for the ELIC+NAM-Nb structure were

collected at the X06A beamline of the Swiss Light Source (Villigen, Switzerland). Both structures

were solved by molecular replacement with Phaser in the CCP4 suite (Winn et al., 2011) using the

published structures for the ELIC pentamer (pdb 2vl0) and a GPCR nanobody (pdb 3p0g) as search

templates. For the ELIC+PAM-Nb structure, the asymmetric unit contains one ELIC pentamer with

five nanobodies bound (one to each subunit). For the ELIC+NAM-Nb structure, the asymmetric unit

contains two ELIC pentamers with one nanobody bound to each pentamer. The electron density for

one of these nanobody molecules is not well defined, suggesting partial occupancy at this pentamer,

and therefore the atom occupancies for this nanobody were manually set to 40% during structure

refinement. The data set for the ELIC+NAM-Nb was anisotropic with data extending to ~3.15 Å in

the best direction and ~3.5 Å in the worst. To correct for anisotropy the unmerged reflections from

XDS (Kabsch, 2010) were uploaded to the STARANISO server (Tickle et al., 2018) and automatically

processed using CC1/2 > 30 and I/s >2 as resolution cut-off criteria. The merged and scaled data

set from this procedure extends to a resolution of 3.25 Å and the statistics produced by the STAR-

ANSIO server are shown in the crystallographic table (Supplementary file 1). Structures were

improved by iterative rounds of manual rebuilding in Coot (Emsley et al., 2010) and automated

refinement in Buster (Smart et al., 2012) or Refmac (Winn et al., 2011). Structure validation was car-

ried out in PDB-REDO (Joosten et al., 2014) and MolProbity (Chen et al., 2010). Figures were pre-

pared with PyMOL (Schrödinger) and UCSF-Chimera (Pettersen et al., 2004). Pore radius profiles

were made using HOLE (Smart et al., 1996) and CAVER (Jurcik et al., 2018). Simulated annealing

omit maps were calculated in PHENIX (Adams et al., 2010) and are shown for the nanobody-ELIC

interaction region (Figure 1—figure supplements 2–3).

Cysteine-scanning mutagenesis and voltage-clamp recordings of 5-
HT3AR
Stage V-VI Xenopus oocytes were purchased from Ecocyte (Germany) and stored in ND-96 (96 mM

NaCl, 2 mM KCl, 1.8 mM CaCl2,1 mM MgCl2, 5 mM HEPES, pH 7.5) containing 2.5 mM sodium pyru-

vate, 50 mM gentamicin and 0.7 mM theophylline. cDNA encoding human 5-HT3AR was cloned into

the pGEM-HE expression plasmid (Liman et al., 1992). Mutants were engineered using the Quik-

Change mutagenesis kit (Agilent) and confirmed by sequencing. cRNA was in vitro transcribed from

linearized pGEM-HE cDNA template using the mMessage mMachine T7 Transcription kit (Thermo-

Fisher). Oocytes were injected with 50 nl of ~400 ng/ml cRNA, and currents were recorded 18–48 hr

post-injection. 5-HT3AR current recordings were obtained using a Roboocyte voltage-clamp system

(Multi Channel systems) at a constant voltage clamp of �60 mV. Oocytes were perfused with ND-96

with no added calcium, and 5-HT (creatinine sulphate complex, Sigma) was diluted in this media.

Oocytes were tested at 10 mM 5-HT before obtaining concentration-response curves. MTSEA-biotin

(Biotium) was diluted immediately prior to application into calcium-free ND-96 solution at a concen-

tration of 2 mM from a stock solution of 500 mM in DMSO. Analysis and curve fitting was performed

using Prism v4.03 (GraphPad Software). Concentration-response data for each oocyte were normal-

ized to the maximum current for that oocyte. Data are presented as the mean ± standard error of

the mean (SEM) with the raw data points overlaid as a dot plot in the relevant figures.

Transparent reporting statements
All Xenopus electrophysiology experiments were repeated three to eight times. The number of ‘n’ is

mentioned in the relevant sections of the main text. We define each separate oocyte recording as a

biological repeat. No data were excluded, unless the oocyte gave no detectable current. All
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electrophysiology experiments were conducted on automated devices, either the HiClamp or the

Roboocyte, so essentially there was no human bias in recording of these data. Data are presented as

the mean ± standard error of the mean (SEM) with the raw data points overlaid as a dot plot. Statisti-

cal comparison between groups of data was performed using an unpaired two-tailed t test or an

ANOVA followed by a Dunnetts multiple comparisons test as appropriate; the significance value p is

mentioned in the relevant sections of the manuscript.

The X-ray diffraction data sets were collected from single crystals and typically the data set with

the highest resolution was used for structural elucidation. Equivalent reflection data were recorded

multiple times in agreement with the rotational symmetry of the crystal packing. The relevant data

multiplicity value for each data set is mentioned in the crystallographic table (Supplementary file 1).

All aspects of X-ray data collection, integration, scaling and merging were fully automated so human

bias was excluded. No data were excluded.
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