813 research outputs found
THE EFFECTS OF 2.0-Bev PROTONS IN MICE
The biological effects of proton beams of 2.0 to 2.2 Bev were studied in mice. Physical studies of particle distribution and depth dosimetry are described. Data are presented on lethal dosage measurements and studies of light element activation in tissues through proton reactions (p,pn) as determined by whole-body counting of gamma activity. (C.H.
Recommended from our members
Thermal Neutron Radiography With the Plutonium Recycle Critical Facility.
Second harmonic generating (SHG) nanoprobes for in vivo imaging
Fluorescence microscopy has profoundly changed cell and molecular biology studies by permitting tagged gene products to be followed as they function and interact. The ability of a fluorescent dye to absorb and emit light of different wavelengths allows it to generate startling contrast that, in the best cases, can permit single molecule detection and tracking. However, in many experimental settings, fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue autofluorescence. Here, we demonstrate that second harmonic generating (SHG) nanoprobes can be used for in vivo imaging, circumventing many of the limitations of classical fluorescence probes. Under intense illumination, such as at the focus of a laser-scanning microscope, these SHG nanocrystals convert two photons into one photon of half the wavelength; thus, when imaged by conventional two-photon microscopy, SHG nanoprobes appear to generate a signal with an inverse Stokes shift like a fluorescent dye, but with a narrower emission. Unlike commonly used fluorescent probes, SHG nanoprobes neither bleach nor blink, and the signal they generate does not saturate with increasing illumination intensity. The resulting contrast and detectability of SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
PROGRESSIVE EPITHELIAL DYSPLASIA IN MOUSE SKIN IRRADIATED WITH 10 Mev PROTONS
Up to 6 months after proton irradiation at 600 and 1200 rad epithelial hyperplasia persisted in the exposed mouse skin. Hydropic degeneration of mandy epithelial cells occurred with intra-epithelial cyst formation with hemorrhage. Focal areas of basement membrane degenerated. Interruption of and fragmentation of underlying collagen fibers was prominent. Of interest is the paramount observation that with this degree of cellular alteration and with complete breakdown of basement membrane the epithelial cells did not invade into the dermis. This suggests that the sltered epithelial cells must actually be definitely neoplastic for true invasion to occur and that a single exposure at these doses did not alter the cells sufficiently to render then andaplastic. It is possible however that larger single doses with subsequent time interval elapse might provoke the formation of neoplastic cells. This and the effect of repeated small doses and with longer periods after irradiation before sacrifice of the animal are now being investigated. (auth
Characterization of the QUartz Photon Intensifying Detector (QUPID) for Noble Liquid Detectors
Dark Matter and Double Beta Decay experiments require extremely low
radioactivity within the detector materials. For this purpose, the University
of California, Los Angeles and Hamamatsu Photonics have developed the QUartz
Photon Intensifying Detector (QUPID), an ultra-low background photodetector
based on the Hybrid Avalanche Photo Diode (HAPD) and entirely made of
ultraclean synthetic fused silica. In this work we present the basic concept of
the QUPID and the testing measurements on QUPIDs from the first production
line. Screening of radioactivity at the Gator facility in the Laboratori
Nazionali del Gran Sasso has shown that the QUPIDs safely fulfill the low
radioactive contamination requirements for the next generation zero background
experiments set by Monte Carlo simulations. The quantum efficiency of the QUPID
at room temperature is > 30% at the xenon scintillation wavelength. At low
temperatures, the QUPID shows a leakage current less than 1 nA and a global
gain of 10^5. In these conditions, the photocathode and the anode show > 95%
linearity up to 1 uA for the cathode and 3 mA for the anode. The photocathode
and collection efficiency are uniform to 80% over the entire surface. In
parallel with single photon counting capabilities, the QUPIDs have a good
timing response: 1.8 +/- 0.1 ns rise time, 2.5 +/- 0.2 ns fall time, 4.20 +/-
0.05 ns pulse width, and 160 +/- 30 ps transit time spread. The QUPIDs have
also been tested in a liquid xenon environment, and scintillation light from
57Co and 210Po radioactive sources were observed.Comment: 15 pages, 22 figure
Snowmass CF1 Summary: WIMP Dark Matter Direct Detection
As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection
subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader
Particle Physics community to produce this document. The charge to CF1 was (a)
to summarize the current status and projected sensitivity of WIMP direct
detection experiments worldwide, (b) motivate WIMP dark matter searches over a
broad parameter space by examining a spectrum of WIMP models, (c) establish a
community consensus on the type of experimental program required to explore
that parameter space, and (d) identify the common infrastructure required to
practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5
page appendix on instrumentation R&
- …