70 research outputs found

    Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke

    Full text link
    BACKGROUND AND PURPOSE: Transcranial color-coded duplex sonography has become a standard diagnostic technique to assess the intracranial arterial status in acute stroke. It is increasingly used for the evaluation of prognosis and the success of revascularization in multicenter trials. The aim of this international consensus procedure was to develop recommendations on the methodology and documentation to be used for assessment of intracranial occlusion and for monitoring of recanalization. METHODS: Thirty-five experts participated in the consensus process. The presented recommendations were approved during a meeting of the consensus group in October 2008 in Giessen, Germany. The project was an initiative of the German Competence Network Stroke and performed under the auspices of the Neurosonology Research Group of the World Federation of Neurology. RESULTS: Recommendations are given on how examinations should be performed in the time-limited situation of acute stroke, including criteria to assess the quality of the acoustic bone window, the use of echo contrast agents, and the evaluation of intracranial vessel status. The important issues of the examiners' training and experience, the documentation, and analysis of study results are addressed. One central aspect was the development of standardized criteria for diagnosis of arterial occlusion. A transcranial color-coded duplex sonography recanalization score based on objective hemodynamic criteria is introduced (consensus on grading intracranial flow obstruction [COGIF] score). CONCLUSIONS: This work presents consensus statements in an attempt to standardize the application of transcranial color-coded duplex sonography in the setting of acute stroke research, aiming to improve the reliability and reproducibility of the results of future stroke studies

    Power, norms and institutional change in the European Union: the protection of the free movement of goods

    Get PDF
    How do institutions of the European Union change? Using an institutionalist approach, this article highlights the interplay between power, cognitive limits, and the normative order that underpins institutional settings and assesses their impact upon the process of institutional change. Empirical evidence from recent attempts to reinforce the protection of the free movement of goods in the EU suggests that, under conditions of uncertainty, actors with ambiguous preferences assess attempts at institutional change on the basis of the historically defined normative order which holds a given institutional structure together. Hence, path dependent and incremental change occurs even when more ambitious and functionally superior proposals are on offer

    Recommendations for measuring whisker movements and locomotion in mice with sensory, motor and cognitive deficits.

    Get PDF
    BACKGROUND: Previous studies have measured whisker movements and locomotion to characterise mouse models of neurodegenerative disease. However, these studies have always been completed in isolation, and do not involve standardized procedures for comparisons across multiple mouse models and background strains. NEW METHOD: We present a standard method for conducting whisker movement and locomotion studies, by carrying out qualitative scoring and quantitative measurement of whisker movements from high-speed video footage of mouse models of Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, Alzheimer's disease, Cerebellar Ataxia, Somatosensory Cortex Development and Ischemic stroke. RESULTS: Sex, background strain, source breeder and genotype all affected whisker movements. All mouse models, apart from Parkinson's disease, revealed differences in whisker movements during locomotion. R6/2 CAG250 Huntington's disease mice had the strongest behavioural phenotype. Robo3R3-5-CKO and RIM-DKOSert mouse models have abnormal somatosensory cortex development and revealed significant changes in whisker movements during object exploration. COMPARISON WITH EXISTING METHOD(S): Our results have good agreement with past studies, which indicates the robustness and reliability of measuring whisking. We recommend that differences in whisker movements of mice with motor deficits can be captured in open field arenas, but that mice with impairments to sensory or cognitive functioning should also be filmed investigating objects. Scoring clips qualitatively before tracking will help to structure later analyses. CONCLUSIONS: Studying whisker movements provides a quantitative measure of sensing, motor control and exploration. However, the effect of background strain, sex and age on whisker movements needs to be better understood

    Venous endothelial injury in central nervous system diseases

    Full text link
    • 

    corecore