404 research outputs found
Hole and positron interaction with vacancies and p-type dopants in epitaxially grown silicon
The concentration of vacancies and impurities in semiconductors plays a crucial role in determining their electrical, optical, and thermal properties. This study aims to clarify the nature of the interaction between positrons and ionized p-type impurities, emphasizing the similarities they share with the interaction between holes and this type of impurity. An overall strategy for investigating defects in semiconductor crystals that exhibit a combination of vacancies and p-type impurities is presented. By using positron annihilation spectroscopy, in particular, Doppler broadening of the annihilation radiation, we quantify the concentration of vacancies in epitaxial Si crystals grown by low-energy plasma-enhanced chemical vapor deposition. The vacancy number densities that we find are (1.2 +/- 1.0) x 10(17) cm(-3 )and (3.2 +/- 1.5) x 10(20) cm(-3) for growth rates of 0.27 and 4.9 nm/s, respectively. Subsequent extended annealing of the Si samples effectively reduces the vacancy density below the sensitivity threshold of the positron technique. Secondary ion mass spectrometry indicates that the boron doping remains unaffected during the annealing treatment intended for vacancy removal. This study provides valuable insights into the intricate interplay between vacancies and ionized impurities with positrons in semiconductor crystals. The obtained results contribute to advance the control and understanding of material properties in heterostructures by emphasizing the significance of managing vacancy and dopant concentrations
Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing
High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8ââĂââ1019 cmâ3 has been achieved starting from an incorporated phosphorous concentration of 1.1ââĂââ1020 cmâ3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350ânm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved
Extended point defects in crystalline materials: Ge and Si
B diffusion measurements are used to probe the basic nature of
self-interstitial 'point' defects in Ge. We find two distinct self-interstitial
forms - a simple one with low entropy and a complex one with entropy ~30 k at
the migration saddle point. The latter dominates diffusion at high temperature.
We propose that its structure is similar to that of an amorphous pocket - we
name it a 'morph'. Computational modelling suggests that morphs exist in both
self-interstitial and vacancy-like forms, and are crucial for diffusion and
defect dynamics in Ge, Si and probably many other crystalline solids
Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of U projectiles at 1 A GeV
The production of heavy neutron-rich nuclei has been investigated using cold
fragmentation reactions of U projectiles at relativistic energies. The
experiment performed at the high-resolving-power magnetic spectrometer FRS at
GSI allowed to identify 45 new heavy neutron-rich nuclei: Pt,
Au, Hg, Tl, Pb, Bi,
Po, At, Rn and Fr. The production
cross sections of these nuclei were also determined and used to benchmark
reaction codes that predict the production of nuclei far from stability.Comment: 5 pages, 2 figure
Fluorine effect on As diffusion in Ge
The enhanced diffusion of donor atoms, via a vacancy (V)-mechanism, severely affects the realization of ultrahigh doped regions in miniaturized germanium (Ge) based devices. In this work, we report a study about the effect of fluorine (F) on the diffusion of arsenic (As) in Ge and give insights on the physical mechanisms involved. With these aims we employed experiments in Ge co-implanted with F and As and density functional theory calculations. We demonstrate that the implantation of F enriches the Ge matrix in V, causing an enhanced diffusion of As within the layer amorphized by F and As implantation and subsequently regrown by solid phase epitaxy. Next to the end-of-range damaged region F forms complexes with Ge interstitials, that act as sinks for V and induce an abrupt suppression of As diffusion. The interaction of Ge interstitials with fluorine interstitials is confirmed by theoretical calculations. Finally, we prove that a possible F-As chemical interaction does not play any significant role on dopant diffusion. These results can be applied to realize abrupt ultra-shallow n-type doped regions in future generation of Ge-based devices
Production of -particle condensate states in heavy-ion collisions
The fragmentation of quasi-projectiles from the nuclear reaction +
at 25 MeV/nucleon was used to produce excited states candidates to
-particle condensation. The experiment was performed at LNS-Catania
using the CHIMERA multidetector. Accepting the emission simultaneity and
equality among the -particle kinetic energies as experimental criteria
for deciding in favor of the condensate nature of an excited state, we analyze
the and states of C and the state of O. A
sub-class of events corresponding to the direct 3- decay of the Hoyle
state is isolated.Comment: contribution to the 2nd Workshop on "State of the Art in Nuclear
Cluster Physics" (SOTANCP2), Universite Libre de Bruxelles (Belgium), May
25-28, 2010, to be published in the International Journal of Modern Physics
Production of medium-mass neutron-rich nuclei in reactions induced by 136Xe projectiles at 1 A GeV on a beryllium target
Production cross sections of medium-mass neutron-rich nuclei obtained in the
fragmentation of 136Xe projectiles at 1 A GeV have been measured with the
FRagment Separator (FRS) at GSI. 125Pd was identified for the first time. The
measured cross sections are compared to 238U fission yields and model
calculations in order to determine the optimum reaction mechanism to extend the
limits of the chart of the nuclides around the r-process waiting point at N=82.Comment: 9 pages, 6 figure
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
We report experimental signals of Bose-Einstein condensation in the decay of
hot Ca projectile-like sources produced in mid-peripheral collisions at
sub-Fermi energies. The experimental setup, constituted by the coupling of the
INDRA 4 detector array to the forward angle VAMOS magnetic spectrometer,
allowed us to reconstruct the mass, charge and excitation energy of the
decaying hot projectile-like sources. Furthermore, by means of quantum
fluctuation analysis techniques, temperatures and mean volumes per particle "as
seen by" bosons and fermions separately are correlated to the excitation energy
of the reconstructed system. The obtained results are consistent with the
production of dilute mixed (bosons/fermions) systems, where bosons experience a
smaller volume as compared to the surrounding fermionic gas. Our findings
recall similar phenomena observed in the study of boson condensates in atomic
traps.Comment: Submitted to Phys. Rev. Lett. (december 2014
Rapid laser-induced low temperature crystallization of thermochromic VO2 sol-gel thin films
The thermochromic properties of vanadium dioxide (VO2) offer great advantages for energy-saving smart windows, memory devices, and transistors. However, the crystallization of solution-based thin films at temperatures lower than 400°C remains a challenge. Photonic annealing has recently been exploited to crystallize metal oxides, with minimal thermal damage to the substrate and reduced manufacturing time. Here, VO2 thin films, obtained via a green solâgel process, were crystallized by pulsed excimer laser annealing. The influence of increasing laser fluence and pulse number on the film properties was systematically studied through optical, structural, morphological, and chemical characterizations. From temperature profile simulations, the temperature rise was confirmed to be confined within the film during the laser pulses, with negligible substrate heating. Threshold laser parameters to induce VO2 crystallization without surface melting were found. With respect to furnace annealing, both the crystallization temperature and the annealing time were substantially reduced, with VO2 crystallization being achieved within only 60 s of laser exposure. The laser processing was performed at room temperature in air, without the need of a controlled atmosphere. The thermochromic properties of the lasered thin films were comparable with the reference furnace-treated samples
First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae
Classical novae are important contributors to the abundances of key isotopes,
such as the radioactive ^{18}F, whose observation by satellite missions could
provide constraints on nucleosynthesis models in novae. The
^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both
oxygen and fluorine isotopes but its reaction rate is not well determined
because of the lack of experimental data at energies relevant to novae
explosions. In this study, the reaction cross section has been measured
directly for the first time in a wide energy range Ecm = 200 - 370 keV
appropriate to hydrogen burning in classical novae. In addition, the E=183 keV
resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the
highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F
reaction rate has been reduced by a factor of 4, thus leading to firmer
constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let
- âŠ