2,237 research outputs found

    Tellurium vacancy in cadmium telluride revisited: size effects in the electronic properties

    Full text link
    The quantum states and thermodynamical properties of the Te vacancy in CdTe are addressed by first principles calculations, including the supercell size and quasiparticle corrections. It is shown that the 64-atoms supercell calculation is not suitable to model the band structure of the isolated Te vacancy. This problem can be solved with a larger 216-atoms supercell, where the band structure of the defect seems to be a perturbation of that of the perfect crystal. It is interesting to note that the Te-vacancy formation energy calculated with both supercell sizes are close in energy, which is attributed to error cancelation. We also show that the interplay between supercell size effects and the band gap underestimation of the generalized gradient approximation strongly influences the predicted symmetry of some charge states.Comment: 9 pages, 7 figure

    Energetics and Electronic Properties of Interstitial Chlorine in CdTe

    Get PDF
    Indexación: Scopus.We acknowledge support from Chilean funding agency FONDECYT under Grants No. 1170480 (W.O.) and 1171807 (E.M-P.). Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).The role of interstitial chlorine in the electronic properties of CdTe is addressed by density functional theory calculations including hybrid functionals and large unit cells. The stability and diffusion energy barriers of the impurity are analyzed as a function of the Fermi level position in the band gap. Chlorine is found to be stable in at least five interstitial sites with rather close formation energies, suggesting that they are all probable to be found. In p-type CdTe, the most stable sites are at the center of a CdTe bond and at a split-interstitial configuration, both acting as shallow donors. Whereas in n-type CdTe, it is found at the tetrahedral site surrounded by Cd hosts, acting as a shallow acceptor. We also find that chlorine can induce a deep acceptor level in the bandgap after binding with three Cd host atoms, which can explain the experimentally observed high resistivity in Cl-doped CdTe. The energy barriers for chlorine diffusion in both p-type and n-type CdTe are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimhttps://onlinelibrary.wiley.com/doi/full/10.1002/pssb.20180021

    Two-neutrino double electron capture on 124^{124}Xe based on an effective theory and the nuclear shell model

    Full text link
    We study the two-neutrino double electron capture on 124^{124}Xe based on an effective theory (ET) and large-scale shell model calculations, two modern nuclear structure approaches that have been tested against Gamow-Teller and double-beta decay data. In the ET, the low-energy constants are fit to electron capture and β−\beta^{-} transitions around xenon. For the nuclear shell model, we use an interaction in a large configuration space that reproduces the spectroscopy of nuclei in this mass region. For the dominant transition to the 124^{124}Te ground state, we find half-lives T1/22νECEC=(1.3−18)×1022T^{2\nu{\rm ECEC}}_{1/2}=(1.3-18)\times 10^{22} y for the ET and T1/22νECEC=(0.43−2.9)×1022T^{2\nu{\rm ECEC}}_{1/2} = (0.43-2.9)\times 10^{22} y for the shell model. The ET uncertainty leads to a half-life almost entirely consistent with present experimental limits and largely within the reach of ongoing experiments. The shell model half-life range overlaps with the ET, but extends less beyond current limits. Our findings thus suggest that the two-neutrino double electron capture on 124^{124}Xe has a good chance to be discovered by ongoing or future experiments. In addition, we present results for the two-neutrino double electron capture to excited states of 124^{124}Te.Comment: 5 pages, 2 figure

    Mexican Health Sector Policy (1980—2004): Structural Adjustment and Pragmatism of Neoliberal Proposals

    Get PDF
    Objectives: To analyze continuity/discontinuity processes in health programs and policies implemented in Mexico during the 1990s and the early twenty-first century, and compare them to those of the 1980s

    Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40-Ca; A shell model challenge

    Get PDF
    Large scale shell model calculations, with dimensions reaching 10**9, are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0+ states of 40-Ca at 3.35-MeV and 5.21-MeV respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf-shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40-Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations, in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q_0(t)~170 e fm**2 up to J=10, that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed band are maximally mixed.Comment: 12 pages, 9 figure

    Electric field and exciton structure in CdSe nanocrystals

    Full text link
    Quantum Stark effect in semiconductor nanocrystals is theoretically investigated, using the effective mass formalism within a 4×44\times 4 Baldereschi-Lipari Hamiltonian model for the hole states. General expressions are reported for the hole eigenfunctions at zero electric field. Electron and hole single particle energies as functions of the electric field (EQD\mathbf{E}_{QD}) are reported. Stark shift and binding energy of the excitonic levels are obtained by full diagonalization of the correlated electron-hole Hamiltonian in presence of the external field. Particularly, the structure of the lower excitonic states and their symmetry properties in CdSe nanocrystals are studied. It is found that the dependence of the exciton binding energy upon the applied field is strongly reduced for small quantum dot radius. Optical selection rules for absorption and luminescence are obtained. The electric-field induced quenching of the optical spectra as a function of EQD\mathbf{E}_{QD} is studied in terms of the exciton dipole matrix element. It is predicted that photoluminescence spectra present anomalous field dependence of the emission lines. These results agree in magnitude with experimental observation and with the main features of photoluminescence experiments in nanostructures.Comment: 9 pages, 7 figures, 1 tabl

    Getting ahead of the arms race: hothousing the coevolution of VirusTotal with a Packer

    Get PDF
    Malware detection is in a coevolutionary arms race where the attackers and defenders are constantly seeking advantage. This arms race is asymmetric: detection is harder and more expensive than evasion. White hats must be conservative to avoid false positives when searching for malicious behaviour. We seek to redress this imbalance. Most of the time, black hats need only make incremental changes to evade them. On occasion, white hats make a disruptive move and find a new technique that forces black hats to work harder. Examples include system calls, signatures and machine learning. We present a method, called Hothouse, that combines simulation and search to accelerate the white hat’s ability to counter the black hat’s incremental moves, thereby forcing black hats to perform disruptive moves more often. To realise Hothouse, we evolve EEE, an entropy-based polymorphic packer for Windows executables. Playing the role of a black hat, EEE uses evolutionary computation to disrupt the creation of malware signatures. We enter EEE into the detection arms race with VirusTotal, the most prominent cloud service for running anti-virus tools on software. During our 6 month study, we continually improved EEE in response to VirusTotal, eventually learning a packer that produces packed malware whose evasiveness goes from an initial 51.8% median to 19.6%. We report both how well VirusTotal learns to detect EEE-packed binaries and how well VirusTotal forgets in order to reduce false positives. VirusTotal’s tools learn and forget fast, actually in about 3 days. We also show where VirusTotal focuses its detection efforts, by analysing EEE’s variants

    Ant colony optimization for object-oriented unit test generation

    Get PDF
    Generating useful unit tests for object-oriented programs is difficult for traditional optimization methods. One not only needs to identify values to be used as inputs, but also synthesize a program which creates the required state in the program under test. Many existing Automated Test Generation (ATG) approaches combine search with performance-enhancing heuristics. We present Tiered Ant Colony Optimization (Taco) for generating unit tests for object-oriented programs. The algorithm is formed of three Tiers of ACO, each of which tackles a distinct task: goal prioritization, test program synthesis, and data generation for the synthesised program. Test program synthesis allows the creation of complex objects, and exploration of program state, which is the breakthrough that has allowed the successful application of ACO to object-oriented test generation. Taco brings the mature search ecosystem of ACO to bear on ATG for complex object-oriented programs, providing a viable alternative to current approaches. To demonstrate the effectiveness of Taco, we have developed a proof-of-concept tool which successfully generated tests for an average of 54% of the methods in 170 Java classes, a result competitive with industry standard Randoop
    • …
    corecore