
Ant Colony Optimization
for Object-Oriented Unit Test Generation

Dan Bruce1, Héctor D. Menéndez2, Earl T. Barr1, and David Clark1

1 University College London, London, UK
{dan.bruce.17,e.barr,david.clark}@ucl.ac.uk

2 Middlesex University London, London, UK
h.menendez@mdx.ac.uk

Abstract. Generating useful unit tests for object-oriented programs is
difficult for traditional optimization methods. One not only needs to identify
values to be used as inputs, but also synthesize a program which creates
the required state in the program under test. Many existing Automated
Test Generation (ATG) approaches combine search with performance-
enhancing heuristics. We present Tiered Ant Colony Optimization (Taco)
for generating unit tests for object-oriented programs. The algorithm
is formed of three Tiers of ACO, each of which tackles a distinct task:
goal prioritization, test program synthesis, and data generation for the
synthesised program. Test program synthesis allows the creation of complex
objects, and exploration of program state, which is the breakthrough that
has allowed the successful application of ACO to object-oriented test
generation. Taco brings the mature search ecosystem of ACO to bear on
ATG for complex object-oriented programs, providing a viable alternative
to current approaches. To demonstrate the effectiveness of Taco, we have
developed a proof-of-concept tool which successfully generated tests for
an average of 54% of the methods in 170 Java classes, a result competitive
with industry standard Randoop.

1 Introduction

Generating unit tests for object-oriented programs is so difficult that the conven-
tional wisdom in the ACO community is that Automated Test Generation (ATG)
for complex object-oriented programs (OOP) is not currently possible for ACO.
Indeed, in 2015 Mao et al. [23] said “for complex types such as String or Object,
the current coding design in ACO cannot effectively handle them”, and in 2018
Sharifipour et al.[27] identified generation of strings and objects as future work.
Solving ATG for OOP requires calling methods in the correct order, with the
correct inputs in order to explore the unit under test. This is a problem with a
gigantic search space. Solving it automatically would be highly profitable, both
in terms of time saved and potential increased coverage of a program.

ATG techniques can be broadly classified as static or dynamic, i.e. those that
only observe the code or those that execute it. In recent years, many dynamic
approaches have used genetic algorithms (GA) [18]. GAs typically mutate and

2 D. Bruce et al.

crossover candidate solutions, which, in the case of creating test programs, can
lead to invalid states. Instead, following pheromone levels attributed to available
methods produces legitimate test programs, guided by the fitness of previous
tests. It is this observation that has motivated our exploration of ACO for object-
oriented ATG. ACO has been applied to generating test cases for programs in
the past. However, those applications were dominated by numerical programs,
where the problem was simply finding the required values of primitive inputs
[5,8,23,27]. Whilst these works show ACO’s effectiveness at test data generation,
they do not support its applicability to automated test generation for real world
object-oriented software.

We introduce Taco, a Tiered Ant Colony Optimization algorithm that can
generate complex test cases for complex object-oriented programs. Taco does
so by following three tiers: 1) it selects a test coverage goal within the program
under test, 2) it synthesizes test programs by creating sequences of methods,
and 3) it generates numeric and string data values required as inputs by the test
program. It is, to the best of our knowledge, the first complete ACO technique
capable of generating valid Java test cases. Taco has been evaluated on 170
Java classes taken from SF110 [14], a well known Java testing benchmark, and
successfully created tests for 54% of methods per class, covering an average
of nearly 50% of lines of code. Taco achieves higher branch and line coverage
than the industry standard tool, Randoop, not all of which overlaps, suggesting
that additional engineering to cover further constructs would yield significant
improvements. Taco demonstrates the potential of ACO for automated test
generation for object-oriented code; further research and engineering effort may
allow ACO to compete with the current state of the art in ATG.

Contributions

– Taco is the first complete ACO technique capable of creating real test cases
for complex object-oriented programs.

– Taco’s Tier II synthesizes test programs by building sequences of method
calls, thereby creating complex objects required as inputs (Section 3.3).

– Taco has been realized as a tool and used to generate JUnit tests for real Java
classes competitively with Randoop (Section 4).

2 Related Work

Relatively little research into automated test generation uses ant-based ap-
proaches [18,23]. Those that have applied ACO to software testing have focused
on generating useful input values. The classical ACO-based test generation
process typically follows 3 main steps: 1) partition the input space, 2) project
each partition into each dimension or variable and, 3) decrease the partition
granularity for those parts which are more interesting for the test purpose. In this
way, each pair (partition, dimension) becomes a node for the graph that an ant
can traverse to find inputs for a program [23]. This approach is usually applied
to discreet domains, but there are several variations. Ayari et al. [5], for example,
use ACOR, which is an ACO variant that was developed to optimize values from

ACO for OOP Unit Test Generation 3

continuous domains [28]. They find numeric inputs required by specific methods.
Similarly , Mao et al. [23] and Sharifipour et al. [27] independently compare
ACO with other metaheuristics on small numerical programs. Both of these
approaches generate values only for a specific method within the program under
test, and they do not consider object-oriented programs. However, in both cases
the ACO approach outperforms the other meta-heuristics. In previous work,
we used an extended version of ACOR for data generation, including strings,
and then used heuristics to create objects and call methods [9]. In contrast, Taco
uses ACO to synthesis a test program and build objects prior to data generation.
Vats et al. [31] gather different ACO applications on software testing, where
some of the work focus on OOP testing. The most relevant either generate
simple inputs for programs following the classical method of partitioning the
domain [12,22], or focus on other aspects of testing like iteration testing [11] and
test suite minimization [29]. None of this work considers generating sequences
of methods and input values as part of the same process, as Taco does.

Current, pure ACO test generation methodologies cannot deal with object-
oriented programs, for which they need to create sequences of methods for
each test case. Srivastava et al. proposed a technique related to our Tier II and
generated test sequences of events, although the events considered did not require
inputs [29]. Our technique has a stage after sequence synthesis which generates
instances of all required inputs. ACO-based program synthesis is known as
Ant Programming (AP) [26]. This field, inspired by genetic programming (GP),
aims to create programs using ACO methods. Some examples are the work of
Rojas and Bentley, which used ACO to synthesize programs which solve boolean
functions [25], and Toffola et al. that compared A* and ACO for guiding program
synthesis and found ACO to be effective at solving bottlenecks [30]. GP has
been directly applied to the task of defining OOP test programs [32,16]. These
techniques build trees of method calls and their required parameters. However,
we contend that pheromone-guided synthesis is more suitable for generating
method sequences than GP’s mutation and crossover operators [32]. Taco creates
test programs that are correct by construction, whereas mutation and crossover
of existing test programs, as is done in GP, can lead to invalid programs that
need to be fixed or discarded. Other approaches combine GP and ACO for
program synthesis, such as the work of Hara et al. [17]. This combination is
called Cartesian Ant Programming and is normally applied to circuits [17,21].
Although this work does solve some programming problems, to the best of our
knowledge, there currently exists no pure ACO-based work that synthesizes
complex Java programs.

3 TACO Algorithm

Solving ATG entails generating programs. Programs are discrete objects. Viewed
as a combinatorial optimization problem, ATG is infeasible, because the search
space is vast and under-constrained. Crucially, test programs require not only
syntactic correctness but also semantic correctness in order to build a valid

4 D. Bruce et al.

program state. Others have sought to constrain the problem via reformulation
as multi-objective search; this tack constrains the fitness of solutions, but not
the search space. Our key insight is that ATG naturally decomposes into a
three deep hierarchy of successive subproblems – and each subproblem further
constrains the overall problem. The three tiers are (1) goal selection, (2) test
program synthesis, and (3) primitive and string types data generation.

Tier I prioritizes and selects goals within the program under test. As its
performance metric is branch coverage, it targets a branch. In each iteration,
Taco focuses on covering one branch at a time. Taco gains great leverage from
its first tier: by selecting promising goals, Taco restricts the second two tiers to
only the relevant subset of the search space. Taco’s program synthesis (Tier II) is
its core novelty. ATG of OOP is unique in that it often requires building a valid
program state to reach a goal. This subtask requires calling a potentially large
number of methods in sequence. A simple example is a goal guarded by an if
that depends on a variable, which, in turn, can only be set by calling a method.
Tier II searches over possible test programs, building objects and generating
sequences of methods with data holes for primitives and strings. ACO shines at
this subtask, quickly finding sequences of available methods that reach the goal.
Finally, the last tier, data generation, is well-understood and well-solved by the
ACO community [28]: here, ACO efficiently finds primitive and string values to
fill the data holes in Tier II’s method sequences.

Taco’s three tiers operate independently. Therefore, one can easily replace or
modify the specific algorithm each tier uses if a new state of the art emerges for its
task — this could be another ACO variant or an entirely different algorithm. For
example, TIII’s algorithm could be modified to exploit research into numerical
data generation when testing numerical programs.

Branch distance measures how far a conditional statement’s control expression
is from a different evaluation outcome in a particular program state. For example,
the branch distance of numerical equality, a == b, is often computed as |a − b|.
Given the conditional statement x == 10, x := 8 creates a program state that
is a distance of 2 from evaluating to true, while x := 100 creates a state that is
90. Branch distance has long been used in ATG. All three of Taco’s tiers use it
as their fitness function to evaluate ants. For numerical conditional statements,
Taco uses Korel’s measures [20]; for string comparisons, it uses Levenshtein
distance [2]. Often in ATG, approach level guides branch distance. Approach
level is the number of control dependent statements, required to reach a target,
that were not executed [6]. Tier I defines goals such that their approach level is
always 0 (Section 3.2), so Taco does not use it.

Taco has two phases, shown in Figure 1. The first phase generates ants using
three-tiered ACO. The second phase converts the ants into test cases, which it
executes, observes and then uses to calculate fitness. Taco uses these fitnesses
to update its ant archives and pheromones lists for both goals and methods.
Although Taco generates an ant for a specific goal, that ant may be effective,
or even cover, other goals. Therefore, once an ant’s test case is executed, Taco
checks for incidental coverage and passes the ant to every goal whose source

ACO for OOP Unit Test Generation 5

Instrumented
Program
under test

Phase 2

Test Case Generator
Junit Test
Case

Run and observe
test case

Update goals
and archives

Tier I: Goal
Selection

Tier II: Test
Program
Synthesis

Phase 1

Tier III: Data
Generation

Fig. 1. An overview of the Taco approach. Phase 1 generates new ants. The distribution
of work amongst the tiers is tunable; Taco chooses 1 goal per iteration, synthesizes 5 test
programs per goal and generates 20 sets of data values per test program. Phase 2 converts
each ant from phase 1 into a JUnit test case, then executes the instrumented program
under test on that test case. Finally, Taco updates its goals and archives based on an ant’s
coverage and fitness.

unit it covered. Taco then checks the ant against a goal’s best so far archive, and
updates the pheromones and archives of each method in the ant’s test program.
If the ant is the new best for a goal, Taco resets the goal’s counter. If an ant covers
a new branch or block, Taco adds it to the test suite. Taco removes covered
goals and updates the list of goals to include those that now meet the criteria
(Section 3.2).

3.1 Problem Definition

A program, P, can be viewed as a Control Flow Graph (CFG) where the nodes
are basic blocks, and edges are branches. A basic block (subsequently called
block) is a sequence of statements which has one entry point, one exit point and,
if the first statement is executed, all statements must be executed once and in
order [1]. Every block has a unique label and the set of all blocks within P is
denoted by L. A branch is defined as a transition of execution from one block to
another li → l j written as bi j with B as the set of all branches.

6 D. Bruce et al.

A test case, tk, is a program which calls P with some input and has a test oracle
that checks the correctness of some program state [7]. This may be a specific
output or merely the absence of failure during execution. From execution of tk,
one can observe which blocks and branches which have been covered. A test suite
is a collection of test cases, where commonly the goal is some form of coverage,
be that block, branch or some other criterion. Branch coverage of a test suite with
n test cases is C =

⋃n
k=1 branches(tk) and block coverage U =

⋃n
k=1 blocks(tk).

3.2 Tier I: Goal Prioritization and Selection

We define goals to be G = {bi, j | li ∈ U ∧ bi, j < C}, thereby restricting goals to only
those uncovered branches whose source block has been covered. This prevents
allocating resources to uncovered branches that are control dependent upon
another uncovered branch. At the start of each iteration, Taco selects one goal
for which it generates a number of test cases. Taco uses an Ant System to select
goals: a goal’s probability, p(g) in Equation 1, is based upon its pheromone level
τg, which is the number of uncovered branches that can be reached from the
goal, and the heuristic value ηg = (1 − cg · δ). Each selection of a goal increases a
counter, cg, which is multiplied by the decay factor, δ (0.01 for Taco).

p(g) =
τg · ηg∑

k∈G τk · ηk
(1)

Pheromone does not decay, instead the heuristic is used as a decay mechanism,
using a counter to decay rather than reducing the pheromone at every time-step.
Taco enforces a minimum pheromone level of 0.1. This process favours goals that
lead to larger regions of uncovered code, and those for which Taco is regularly
discovering new, best test cases. The counter helps to avoid wasting time on
infeasible goals, as once Taco gets as close as is possible, the counter will not be
reset again and the probability of selecting the target will only decrease. Previous
ATG tools have used counters in this way [3].

3.3 Tier II: Test Program Synthesis

In Tier II of Taco, we take a non-traditional approach to program synthesis:
holes in our program are considered as data holes and are missing primitive
and string data values, not arbitrary code fragments [15]. Furthermore, to the
best of our knowledge, we are the first to apply ACO to object-oriented program
synthesis, which has been dominated by enumeration and constraint solving.
For each goal selected by Tier I, many test programs (ants) are synthesized to
allow optimization towards a covering test program (five in our implementation).
Each goal has an archive of the best performing ants and pheromone levels for
each method that has been called by ants considered the goal. Algorithm 1 and 2
show the pseudocode for Tier II.

When deciding which test program to execute next, Taco, can select an
existing test program from the archive, or synthesize a new one. At line 1 of

ACO for OOP Unit Test Generation 7

Algorithm 1 Tier II: The testSynth algorithm builds a test program, represented
as a sequence of method calls, 〈m, i, o〉. The select1,2 and getAvailableMethods
functions are described in the text. buildMethodSeq calls Algorithm 2.
Input: P, the program under test.
Input: g, the goal selected in Tier I.
Input: Ag, a list of previously generated Ms ordered by performance at g.
Input: sg, a function that outputs the pheromone of a method at g.
Output: M, a sequence of method call tuples with holes for primitive or string data.
1: if random(0.0, 1.0) > select threshold then
2: return select1(Ag) {This helper function is described in text.}
3: M := 〈〉
4: repeat
5: Ma := getAvailableMethods(P, M) {methods in scope}
6: m := select2(Ma, sg) {This helper function is described in text.}
7: M := buildMethodSeq(M,method, sg) {See Algorithm 2}
8: until (resources exhausted ∨m = NULL)
9: return M

Algorithm 1, a global parameter dictates the probability of selecting versus
generating a test program (in our implementation the probability of either is
50%). A test program is selected from the archive, select1 on line 2, with probability
proportional to its position within the archive. As the archive is sorted by branch
distance, the test program with the lowest branch distance is the most likely.

At first, available methods are constructors or static methods of the program
under test. Then, moving forwards, any method of an object that has been
instantiated within M and in scope. The function sg returns the current pheromone
level of a method with respect to goal g. A method’s pheromone starts at ρ0; ants
that perform well, and are added to a goal’s archive, add pheromone to each
method they visit. Pheromone change is shown in Equation 2, where n is the
number of ants added to the goal’s archive that call method mi, a is the number of
ants generated that call mi and γm, and δm are algorithm parameters that dictate
amount of pheromone laid and removed3. Therefore, pheromone decays every
time a method is added to a test program, rather than at each time-step. At time
N, ρN

mi
gives the pheromone of method mi in Equation 3.

∆ρmi = (n × γm) − (a × δm) (2) ρN
mi

= ρN−1
mi

+ ∆ρmi (3)

At each step, Taco selects a method, line 6 of Algorithm 1 (select2), probabilis-
tically according to pheromone levels of available methods. Taco can choose to
end the test program before reaching the max length at this point, by selecting
NULL in place of a method. When adding the selected method to the sequence
in Algorithm 2, any primitive or string values required are left as holes within
the program (line 6). Tier III later searches over the input domain of these holes

3 For our implementation of Taco the following values were used: ρ0 = 50, γm = 0.5,
δm = 0.05. With a minimum pheromone of 1 and maximum of 100.

8 D. Bruce et al.

Algorithm 2 Tier II: This buildMethodSeq adds a method call, m, its parameters,
and a reference to its output, to the sequence of methods being generated, M. It
is recursive, because some of m’s parameters might be methods or be an abstract
data type one of whose constructors we must call. buildMethodSeq leaves data
holes in the sequences for primitive or string parameters. select2 and insert are
described in the text.
Input: m, the method selected to be added to the test program.
Input: M, the method sequence (test program) which m should be added to.
Input: sg, a function that outputs the pheromone of a method at g.
Output: M, a sequence of method call tuples with holes for primitive or string data.
1: inputs := 〈〉, rid := NULL
2: if !isVoid(m) then
3: rid := getNonce()
4: for all p ∈ getParameters(m) do
5: if instanceof (p) ∈ primitives ∪ {String} then
6: inputs += HOLE : instanceof (p)
7: else
8: Ca := getAvailableConstructors(p)
9: c := select2(Ca, sg)

10: M := buildMethodSeq(M, c, sg) {Recursive call, returns M with c inserted}
11: inputs += getRid(M, c)
12: M := insert(M, 〈m, inputs, rid〉) {This helper function is described in text.}
13: return M

to find a set of instances that minimize branch distance to the goal. Object param-
eters are referenced using their rid, an output identifier which is independent of
position within sequence. When the tuple defining a method call is added to a
test program, line 12 of Algorithm 2 (insert), it is injected at the last position in
the sequence where it still has an affect. For example, Figure 2 shows the JUnit
representation of a sequence of method calls. When v1.methodUserObj() (line
6) was selected, it had to be inserted after v1was defined (line 5), but before it
was used (line 7).

Tier II’s testSynth generates sequences, but a natural way to view them is as
programs with data holes. The JUnit test case in Figure 2 is obtained from the
following sequence

M = 〈 (new ExClass () , 〈〉 , v0) , (new UserObj , 〈HOLE: String〉 , v1) ,
(v1 . methodUserObj , 〈〉 , NULL) , (v0 . method1 () , 〈v1〉 , v2) ,
(v0 . setValue , 〈HOLE: i n t 〉 , NULL) , (v0 . t a r g e t () , 〈〉 , NULL) 〉

To construct M, testSynth takes a goal, assumed to be within target(). Early in
the search-process, testSynth generates nearly random method sequences, as
pheromone levels initially provide no guidance. As Taco iterates, methods that
create states that execute branches close to the goal will accumulate pheromones.
Pheromone levels will rapidly suggest selecting target(). The selection of
v0.method1() triggers addMethodSeq, which processes v0.method1()’s pa-
rameter of type UserObj. addMethodSeq then probabilistically selects one of

ACO for OOP Unit Test Generation 9

1 public class ExampleClassTest() {
2 @Test

3 public void testMethod1() {
4 ExClass v0 = new ExClass();
5 UserObj v1 = new UserObj(<HOLE:String >);
6 v1.methodUserObj();

7 boolean v2 = v0.method1(v1);
8 v0.setValue(<HOLE:int>)
9 v0.target()

10 }

11 }

Fig. 2. Output of Tier II: a method sequence realized as a JUnit test program with data
holes.

UserObj’s constructors, relying on the pheromone levels laid by ants in previous
iterations. This constructor builds the v1 rid, which addMethodSeq passes to
v0.method1(). While addMethodSeq does not directly change pheromone lev-
els, it does indirectly affect them: its addition of methods to a method sequence
means that ants will traverse and update those method’s pheromone levels
in subsequent iterations. addMethodSeq’s addition of UserObj’s constructor
makes v1.methodUserObj() available to subsequent iterations, as the v1 rid is
within the method sequence.

3.4 Tier III: Input Data Generation

Having progressed through the two previous tiers, the search space has been
reduced from all valid test programs for the program under test to the input
domain of the primitive and string holes. For Figure 2, the input domain is
one String and one int. For each test program, there are still a huge number
of possibilities, which is why the optimization process samples many possible
values for each (20 in the case of Taco’s implementation).

A goal has an archive of primitive and string values for every method which
has been called in a test program considered at the goal. Each of these archives
operates in accordance with ACOR, allowing new values to be sampled based
on the contents of the archive [28]. When values are needed for a method, a
guide is selected from the method’s archive based on position. For string values
the method for sampling is as in Dorylus [9], mutating the guiding value by
inserting, removing and swapping characters. For primitives, the guide value is
used to define a Gaussian distribution, from which Taco samples a new value
for each variable. Equation 4 and 5 are the taken from directly from ACOR.

Gd
e (x) =

1

σd
e

√
2π

e
−

(
x − vd

e

)2

2σd2
e (4) σd

e = ζ
k∑

l=1

abs
(
vd

l − vd
e

)
k − 1

(5)

10 D. Bruce et al.

vd
e is the value of variable d in the guide e. The standard deviation, σd

e , is
calculated as the mean difference between the guide and all other values in the
archive Equation 5, its size controlled by ζ.

When an archive has spare capacity, Taco adds the input values of any ant
that calls the method to it. Once capacity is reached, the ant must have a smaller
branch distance than the current bottom of the archive.

This tier is where most related work on automated test generation operates,
with the holes in a test program forming the vector of inputs for the ant
algorithm. As such, the specific variant of ACO used could easily be swapped
and experimented with, which we plan to do in future work.

4 Evaluation

To evaluate Taco, we implemented it in Java. It instruments the class under test
and obtain control flow graphs for methods within classes. Taco handles arrays
and lists, treating length as an integer hole and the contents as parameters. Taco
does not currently handle other Java builtins, such as maps, sets, stacks etc. Our
implementation used parameter values as given in Section 3; please note: these
are not optimized values. Future work will study the effects of different values
and search for optimal default settings.

We evaluated Taco’s ability to automatically generate JUnit tests for 170 Java
classes. These classes are part of the SF110 corpus [14]. SF110 contains 23,886
classes from 110 Java projects selected from SourceForge between 2012 and 2014.
We selected these 170 classes uniformly at random. They came from 46 projects,
and have an average of 21 branches, 66 lines of code and 16 methods each. When
testing, we allowed two minutes of test case generation per class (each repeated
ten times). The process of compiling, running and measuring coverage of the
test suites was performed after, and not timed. Coverage data was obtained by
running the output test suite on the original class with JUnit and Jacoco4.

The state of the art in ACO applied to ATG does not handle object-oriented
programs. Our central result is that Taco is the first ACO approach to ATG for
object-oriented programs: Taco successfully generated test cases for an average
of 54% of methods across the 170 classes, covering nearly 50% of lines of code.
Java is a large language with huge industrial uptake. Generating test suites for
the remaining 46% of methods would rely on further engineering to implement
all of Java’s many constructs. These include filesystem and network interactions,
which Taco has no control over.

We ran the same experiments with two highly developed, industry standard,
Java unit test generation tools; Randoop and EvoSuite. Randoop has been under
active development for over a decade, it uses feedback-directed random test
generation to build a test suite for the class or program under test [24]. It has
found previously unknown errors in widely used libraries and is currently
used in industry5. It has been used as a baseline in the Search-Based Software

4 JaCoCo is a free code coverage library for Java: https://www.eclemma.org/jacoco/
5 https://randoop.github.io/randoop/

ACO for OOP Unit Test Generation 11

Coverage Criterion
Tool Branch Line Instruction Complexity Method

Randoop 19.0% 48.3% 44.3% 46.7% 56.0%
Taco 20.2% 48.7% 47.9% 47.5% 54.2%
EvoSuite 47.5% 70.3% 69.1% 70.2% 78.4%

Table 1. Average coverage of Randoop, Taco and EvoSuite on the 170 classes selected
from SF110, as reported by Jacoco; Taco’s performance respectably falls between two state-
of-the-art ATG tools that have enjoyed substantial, longterm, and ongoing engineering
effort.

Testing (SBST) tool competition, where it achieved the second highest score out
of five tools in 2019 [19]. EvoSuite is the state of the art in search-based unit test
generation [13]. Similarly to Randoop, it has been actively developed for close to
a decade. At its core it uses a genetic algorithm but has become a collection of
state of the art techniques for generating unit tests for Java (including filesystem
and network mocking [4]). The prowess of EvoSuite is demonstrated by the
fact it has won six of seven recent Search-Based Software Testing (SBST) tool
competitions [10].

Despite the huge engineering advantage of Randoop, Taco’s results are
promising, beating Randoop in all measures except method coverage (Table 1).
EvoSuite’s combination of advanced search techniques and enormous engineer-
ing effort allows it to generate tests for 78% of methods on average, covering
close to 50% of branches. Unsurprisingly, it beats both Taco and Randoop in all
measures. For future ACO ATG for OOP variants, EvoSuite both defines a per-
formance target to meet (or beat) and, given EvoSuite’s history of amalgamating
best-of-class search techniques, a target to join and extend.

5 Conclusion

This paper has presented a novel Ant Colony Optimization algorithm, Taco,
which applys ACO to object-oriented unit test generation. Taco combines a
unique tiered structure with a new ACO technique for synthesising test programs
for object-oriented code. We have developed a prototype tool which implements
Taco and have run it on real Java programs, generating tests for more than
50% of methods, on average. ACO is a powerful meta-heuristic and we hope
that this paper has served as a proof of concept that it can be used to generate
complex test cases for complex object-oriented programs. Future work will close
the engineering gap between Taco and the other tools to provide a framework
for comparing ACO variants in the domain of object-oriented ATG.

References

1. Allen, F.E.: Control flow analysis. In: ACM Sigplan Notices. vol. 5, pp. 1–19. ACM
(1970)

12 D. Bruce et al.

2. Alshahwan, N., Harman, M.: Automated web application testing using search
based software engineering. In: International Conference on Automated Software
Engineering (ASE). pp. 3–12. IEEE/ACM (2011)

3. Arcuri, A.: Many Independent Objective (MIO) Algorithm for Test Suite Generation.
In: International Symposium on Search Based Software Engineering (SSBSE). pp.
3–17. Springer (2017)

4. Arcuri, A., Fraser, G., Galeotti, J.P.: Generating tcp/udp network data for automated
unit test generation. In: Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). pp. 155–165. ACM (2015)

5. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input data generation
via ant colony. In: Annual Conference on Genetic and Evolutionary Computation
(GECCO). pp. 1074–1081. ACM (2007)

6. Baars, A., Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Tonella, P., Vos, T.:
Symbolic search-based testing. In: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). pp. 53–62. IEEE (2011)

7. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: A survey. Transactions on Software Engineering 41(5), 507–525
(2014)

8. Bidgoli, A.M., Haghighi, H.: Augmenting ant colony optimization with adaptive
random testing to cover prime paths. Journal of Systems and Software 161, 110495
(2020)

9. Bruce, D., Menéndez, H.D., Clark, D.: Dorylus: An ant colony based tool for auto-
mated test case generation. In: International Symposium on Search Based Software
Engineering (SSBSE). pp. 171–180. Springer (2019)

10. Campos, J., Panichella, A., Fraser, G.: Evosuite at the sbst 2019 tool competition.
In: International Workshop on Search-Based Software Testing (SBST). pp. 29–32.
IEEE/ACM (2019)

11. Chen, X., Gu, Q., Zhang, X., Chen, D.: Building prioritized pairwise interaction test
suites with ant colony optimization. In: International Conference on Quality Software.
pp. 347–352. IEEE (2009)

12. Farah, R., Harmanani, H.M.: An ant colony optimization approach for test pattern
generation. In: Canadian Conference on Electrical and Computer Engineering. pp.
001397–001402. IEEE (2008)

13. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: International
Conference On Quality Software (QSIC). pp. 31–40. IEEE (2011)

14. Fraser, G., Arcuri, A.: A large scale evaluation of automated unit test generation using
evosuite. Transactions on Software Engineering and Methodology (TOSEM) 24(2), 8
(2014)

15. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Foundations and Trends
in Programming Languages 4(1-2), 1–119 (2017)

16. Gupta, N.K., Rohil, M.K.: Using genetic algorithm for unit testing of object oriented
software. In: International Conference on Emerging Trends in Engineering and
Technology. pp. 308–313. IEEE (2008)

17. Hara, A., Watanabe, M., Takahama, T.: Cartesian ant programming. In: International
Conference on Systems, Man, and Cybernetics. pp. 3161–3166. IEEE (2011)

18. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends,
techniques and applications. Computing Surveys (CSUR) 45(1), 11 (2012)

19. Kifetew, F., Devroey, X., Rueda, U.: Java unit testing tool competition-seventh round.
In: International Workshop on Search-Based Software Testing (SBST). pp. 15–20.
IEEE/ACM (2019)

ACO for OOP Unit Test Generation 13

20. Korel, B.: Automated software test data generation. Transactions on Software Engi-
neering 16(8), 870–879 (1990)

21. Kushida, J.i., Hara, A., Takahama, T., Mimura, N.: Cartesian ant programming intro-
ducing symbiotic relationship between ants and aphids. In: International Workshop
on Computational Intelligence and Applications (IWCIA). pp. 115–120. IEEE (2017)

22. Li, K., Zhang, Z., Liu, W.: Automatic test data generation based on ant colony
optimization. In: International Conference on Natural Computation. vol. 6, pp.
216–220. IEEE (2009)

23. Mao, C., Xiao, L., Yu, X., Chen, J.: Adapting ant colony optimization to generate test
data for software structural testing. Swarm and Evolutionary Computation 20, 23–36
(2015)

24. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test genera-
tion. In: International Conference on Software Engineering (ICSE). pp. 75–84. IEEE
(2007)

25. Rojas, S.A., Bentley, P.J.: A grid-based ant colony system for automatic program
synthesis. In: Late Breaking Papers at the Genetic and Evolutionary Computation
Conference. Citeseer (2004)

26. Roux, O., Fonlupt, C.: Ant programming: Or how to use ants for automatic program-
ming. In: Proceedings of ANTS. vol. 2000, pp. 121–129. Springer (2000)

27. Sharifipour, H., Shakeri, M., Haghighi, H.: Structural test data generation using a
memetic ant colony optimization based on evolution strategies. Swarm and Evolu-
tionary Computation 40, 76–91 (2018)

28. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European
Journal of Operational Research 185(3), 1155–1173 (2008)

29. Srivastava, P.R., Baby, K.: Automated software testing using metahurestic technique
based on an ant colony optimization. In: International Symposium on Electronic
System Design. pp. 235–240. IEEE (2010)

30. Toffola, L.D., Pradel, M., Gross, T.R.: Synthesizing programs that expose performance
bottlenecks. In: International Symposium on Code Generation and Optimization
(CGO). pp. 314–326. ACM (2018)

31. Vats, P., Mandot, M., Gosain, A.: A comparative analysis of ant colony optimization for
its applications into software testing. In: Innovative Applications of Computational
Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH).
pp. 476–481. IEEE (2014)

32. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software us-
ing strongly-typed genetic programming. In: Annual Conference on Genetic and
Evolutionary Computation. pp. 1925–1932 (2006)

	Ant Colony Optimizationfor Object-Oriented Unit Test Generation

