20 research outputs found
Off-Axis Nulling Transfer Function Measurement: A First Assessment
We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp 4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results
An investigation of the close environment of beta Cep with the VEGA/CHARA interferometer
High-precision interferometric measurements of pulsating stars help to
characterize their close environment. In 1974, a close companion was discovered
around the pulsating star beta Cep using the speckle interferometry technique
and features at the limit of resolution (20 milli-arcsecond or mas) of the
instrument were mentioned that may be due to circumstellar material. Beta Cep
has a magnetic field that might be responsible for a spherical shell or
ring-like structure around the star as described by the MHD models. Using the
visible recombiner VEGA installed on the CHARA long-baseline interferometer at
Mt. Wilson, we aim to determine the angular diameter of beta Cep and resolve
its close environment with a spatial resolution up to 1 mas level. Medium
spectral resolution (R=6000) observations of beta Cep were secured with the
VEGA instrument over the years 2008 and 2009. These observations were performed
with the S1S2 (30m) and W1W2 (100m) baselines of the array. We investigated
several models to reproduce our observations. A large-scale structure of a few
mas is clearly detected around the star with a typical flux relative
contribution of 0.23 +- 0.02. Our best model is a co-rotational geometrical
thin ring around the star as predicted by magnetically-confined wind shock
models. The ring inner diameter is 8.2 +- 0.8 mas and the width is 0.6 +- 0.7
mas. The orientation of the rotation axis on the plane of the sky is PA = 60 +-
1 deg, while the best fit of the mean angular diameter of beta Cep gives UD[V]
= 0.22 +- 0.05 mas. Our data are compatible with the predicted position of the
close companion of beta Cep. These results bring additional constraints on the
fundamental parameters and on the future MHD and asteroseismological models of
the star.Comment: Paper accepted for publication in A&A (in press
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
A dynamical measure of the black hole mass in a quasar 11 billion years ago
Tight relationships exist in the local universe between the central stellar
properties of galaxies and the mass of their supermassive black hole. These
suggest galaxies and black holes co-evolve, with the main regulation mechanism
being energetic feedback from accretion onto the black hole during its quasar
phase. A crucial question is how the relationship between black holes and
galaxies evolves with time; a key epoch to probe this relationship is at the
peaks of star formation and black hole growth 8-12 billion years ago (redshifts
1-3). Here we report a dynamical measurement of the mass of the black hole in a
luminous quasar at a redshift of 2, with a look back time of 11 billion years,
by spatially resolving the broad line region. We detect a 40 micro-arcsecond
(0.31 pc) spatial offset between the red and blue photocenters of the H
line that traces the velocity gradient of a rotating broad line region. The
flux and differential phase spectra are well reproduced by a thick, moderately
inclined disk of gas clouds within the sphere of influence of a central black
hole with a mass of 3.2x10 solar masses. Molecular gas data reveal a
dynamical mass for the host galaxy of 6x10 solar masses, which indicates
an under-massive black hole accreting at a super-Eddington rate. This suggests
a host galaxy that grew faster than the supermassive black hole, indicating a
delay between galaxy and black hole formation for some systems.Comment: 5 pages Main text, 8 figures, 2 tables, to be published in Nature,
under embargo until 29 January 2024 16:00 (London
Mid-infrared circumstellar emission of the long-period Cepheid l Carinae resolved with VLTI/MATISSE
Stars and planetary system
MATISSE, the VLTI mid-infrared imaging spectro-interferometer
GalaxiesStars and planetary systemsInstrumentatio
VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance
Context. Among optical stellar interferometers, the CHARA Array located at Mt Wilson in California offers the potential of very long baselines (up to 330 m) and the prospect of coupling multiple beam combiners. This paper presents the principle and the measured performance of VEGA, Visible spEctroGraph and polArimeter installed in September 2007 at the coherent focus of the array.
Aims. With 0.3 ms of arc of spatial resolution and up to of spectral resolution, VEGA intends to measure fundamental parameters of stars, to study stellar activities and to image and analyze circumstellar environments. We describe the observing modes that have been implemented for this spectro-polarimeter and show actual performances measured on the sky during the first observing runs.
Methods. The astrophysical programs are described in relation to the observing modes of the instrument, the presentation of the spectrograph and of the interface table is shown and finally the data is presented. We discuss the perspectives of further development in the framework of the CHARA Array.
Results. We show that VEGA/CHARA is fully operational. The current limiting magnitude is nearly 7 but the results depend on the observing conditions (seeing, spectral resolution, etc.). We have validated the stability of the instrumental visibility at the level of 1 to 2% over half an hour and of the instrumental polarization for various declinations. Some examples of squared visibility and differential visibility are presented.
Conclusions. The spectro-polarimeter VEGA has been installed and successfully tested on CHARA. It will permit stellar physics studies at unprecedented spectral and spatial resolutions