271 research outputs found

    Cataclysmic Variables — X-rays and Optical Activity in V1223 Sgr and V709 Cas

    Get PDF
    Intermediate polars are a major fraction of all cataclysmic variables detected by INTEGRAL in hard X-ray. These objects have recently been proposed to be the dominant X-ray source population detected near the Galactic centre, and they also contribute significantly to X-ray diffuse Galactic ridge emission. Nevertheless, only 25% of all known intermediate polars have been detected in hard X-ray. This fact can be related to the activity state of these close interacting binaries.A multi-frequency (from optical to X-ray) investigation of intermediate polars is essential for understanding the physical mechanisms responsible for the observed activity of these objects

    CD4+4^{\text{+}} T cells in cancer

    Get PDF
    Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+8^{\text{+}} T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+4^{\text{+}} T cells, corresponding to the long-known fact that CD4+4^{\text{+}} T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+4^{\text{+}} T cells in cancer, which hold great promise for improving knowledge and therapies in cancer

    Instantaneous Bethe-Salpeter equation: utmost analytic approach

    Get PDF
    The Bethe-Salpeter formalism in the instantaneous approximation for the interaction kernel entering into the Bethe-Salpeter equation represents a reasonable framework for the description of bound states within relativistic quantum field theory. In contrast to its further simplifications (like, for instance, the so-called reduced Salpeter equation), it allows also the consideration of bound states composed of "light" constituents. Every eigenvalue equation with solutions in some linear space may be (approximately) solved by conversion into an equivalent matrix eigenvalue problem. We demonstrate that the matrices arising in these representations of the instantaneous Bethe-Salpeter equation may be found, at least for a wide class of interactions, in an entirely algebraic manner. The advantages of having the involved matrices explicitly, i.e., not "contaminated" by errors induced by numerical computations, at one's disposal are obvious: problems like, for instance, questions of the stability of eigenvalues may be analyzed more rigorously; furthermore, for small matrix sizes the eigenvalues may even be calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,ηγγ\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure

    Scalar Mesons in a Relativistic Quark Model with Instanton-Induced Forces

    Get PDF
    In a relativistic quark model with linear confinement and an instanton-induced interaction which solves the η\eta-η\eta' puzzle, scalar mesons are found as almost pure SU(3) flavor states. This suggests a new interpretation of the scalar nonet: We propose that the recently discovered f0(1500)f_0(1500) is not a glueball but the scalar (mainly)--octet meson for which the KKˉK\bar{K} decay mode is suppressed. The mainly--singlet state is tentatively identified with the f0(980)f_0(980). The isovector and isodoublet states correspond to the a0(1450)a_0(1450) and K(1430)K^{\ast}(1430), respectively.Comment: 10 pages including 2 uuencoded figures, RevTe

    The stability of the spectator, Dirac, and Salpeter equations for mesons

    Get PDF
    Mesons are made of quark-antiquark pairs held together by the strong force. The one channel spectator, Dirac, and Salpeter equations can each be used to model this pairing. We look at cases where the relativistic kernel of these equations corresponds to a time-like vector exchange, a scalar exchange, or a linear combination of the two. Since the model used in this paper describes mesons which cannot decay physically, the equations must describe stable states. We find that this requirement is not always satisfied, and give a complete discussion of the conditions under which the various equations give unphysical, unstable solutions

    Current correlators to all orders in the quark masses

    Full text link
    The contributions to the coefficient functions of the quark and the mixed quark-gluon condensate to mesonic correlators are calculated for the first time to all orders in the quark masses, and to lowest order in the strong coupling constant. Existing results on the coefficient functions of the unit operator and the gluon condensate are reviewed. The proper factorization of short- and long-distance contributions in the operator product expansion is discussed in detail. It is found that to accomplish this task rigorously the operator product expansion has to be performed in terms of non-normal-ordered condensates. The resulting coefficient functions are improved with the help of the renormalization group. The scale invariant combination of dimension 5 operators, including mixing with the mass operator, which is needed for the renormalization group improvement, is calculated in the leading order.Comment: 24 pages, LateX file, TUM-T31-21/92, 1 postscript file include

    Baryon spectra with instanton induced forces

    Full text link
    Except the vibrational excitations of KK and KK^* mesons, the main features of spectra of mesons composed of quarks uu, dd, and ss can be quite well described by a semirelativistic potential model including instanton induced forces. The spectra of baryons composed of the same quarks is studied using the same model. The results and the limitations of this approach are described. Some possible improvements are suggested.Comment: 5 figure

    Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope

    Get PDF
    We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector, called CELESTE, used first 40, then 53 heliostats of the former solar facility "Themis" in the French Pyrenees to collect Cherenkov light generated in atmospheric particle cascades. The signal from Mrk 421 is often strong. We compare its flux with previously published multi-wavelength studies and infer that we are straddling the high energy peak of the spectral energy distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab flux near 100 GeV. The data analysis and understanding of systematic biases have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 -- corrected error in author lis
    corecore