517 research outputs found

    Separation of variables in quasi-potential systems of bi-cofactor form

    Full text link
    We perform variable separation in the quasi-potential systems of equations of the form q¹=−A−1∇k=−A~−1∇k~\ddot{q}=-A^{-1}\nabla k=-\tilde{A}^{-1}\nabla\tilde{k}{}, where AA and A~\tilde{A} are Killing tensors, by embedding these systems into a bi-Hamiltonian chain and by calculating the corresponding Darboux-Nijenhuis coordinates on the symplectic leaves of one of the Hamiltonian structures of the system. We also present examples of the corresponding separation coordinates in two and three dimensions.Comment: LaTex, 30 pages, to appear in J. Phys. A: Math. Ge

    Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey

    Get PDF
    We test and reject the claim of Segal et al. (1993) that the correlation of redshifts and flux densities in a complete sample of IRAS galaxies favors a quadratic redshift-distance relation over the linear Hubble law. This is done, in effect, by treating the entire galaxy luminosity function as derived from the 60 micron 1.2 Jy IRAS redshift survey of Fisher et al. (1995) as a distance indicator; equivalently, we compare the flux density distribution of galaxies as a function of redshift with predictions under different redshift-distance cosmologies, under the assumption of a universal luminosity function. This method does not assume a uniform distribution of galaxies in space. We find that this test has rather weak discriminatory power, as argued by Petrosian (1993), and the differences between models are not as stark as one might expect a priori. Even so, we find that the Hubble law is indeed more strongly supported by the analysis than is the quadratic redshift-distance relation. We identify a bias in the the Segal et al. determination of the luminosity function, which could lead one to mistakenly favor the quadratic redshift-distance law. We also present several complementary analyses of the density field of the sample; the galaxy density field is found to be close to homogeneous on large scales if the Hubble law is assumed, while this is not the case with the quadratic redshift-distance relation.Comment: 27 pages Latex (w/figures), ApJ, in press. Uses AAS macros, postscript also available at http://www.astro.princeton.edu/~library/preprints/pop682.ps.g

    The Cauchy two-matrix model

    Full text link
    We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation functions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.Comment: 34 pages, 2 figures. V2: changes only to metadat

    Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass

    Get PDF
    Significant use of forest biomass in the iron and steel industry (ISI) to mitigate fossil CO2 emissions will affect the biomass availability for other users of the same resource. This paper explores the market effects of increased forest biomass competition when promoting the use of forest-based bio-products in the ISI, as well as the interactions between the ISI and the forest industries. We employ a soft-linking approach that combines a geographically explicit techno-economic energy system model and an economic partial equilibrium model of the forest industries and forestry sectors. This allows for iterative endogenous modelling of new equilibrium price developments for different biomass assortments, determining locational choice of bio-products and assessing optimal bio-products technology choices. The results indicate an upward pressure on biomass prices when bio-products are introduced in the ISI (up to 62%), which affects both forest industries and the ISI itself. Prudence is thus warranted not to render bio-production investments uneconomical ex-post by neglecting to include potential price effects in investment decisions. The estimated price effects can be mitigated by increased domestic biomass supply, adjustments of international trade or by revising relevant policies. Even though the results suggest that the price effects will affect the geographical preferences for individual bio-production plants, proximity to the ISI production facility and integration benefits are more important than the proximity to cheaper biomass feedstocks. Product gas production integrated at ISI sites emerges as particularly attractive, while charcoal production exhibits sensitivity to fluctuating markets, both regarding resulting cost for the ISI, and preferred production locations

    A spatial-explicit price impact analysis of increased biofuel production on forest feedstock markets: A scenario analysis for Sweden

    Get PDF
    The present paper introduces an integrated spatially explicit framework for assessing price impact on forestry markets in Sweden. The framework is based on the “soft-link” of a price determination model, the SpPDM model with the BeWhere Sweden model. The aim is to analyse the impacts of increased forest-based biofuel production for transportation within the Swedish context by 2030. To that effect, we develop scenarios analyses based on the simulations of successive biofuel production targets, under different assumptions concerning the competition intensity for forest biomass and the use of industrial by-products. The results suggest marginal impacts on the prices of forest biomass. The average across spatial-explicit prices varies from 0% to 2.8% across feedstocks and scenario types. However, the distribution of the spatial-explicit price impacts displays large variation, with price impacts reaching as high as 8.5%. We find that the pattern of spatial distribution of price impacts follows relatively well the spatial distribution of demand pressure. However, locations with the highest price impacts show a tendency of mismatch with the locations of the highest demand pressure (e.g. sawlogs). This is a counterintuitive conclusion compared to results from non-spatial economic models. The spatial-explicit structure of the framework developed, and its refined scale allows such results to be reported. Hence, from a policy-making perspective, careful analysis should be devoted to the locational linkages for forestry markets of increased biofuel production in Sweden

    Complete Genome Sequence of Francisella endociliophora Strain FSC1006, Isolated from a Laboratory Culture of the Marine Ciliate Euplotes raikovi

    Get PDF
    A strain of Francisella endociliophora was isolated from a laboratory culture of the marine ciliate Euplotes raikovi. Here, we report the complete genome sequence of the bacterial strain FSC1006 (Francisella Strain Collection, Swedish Defence Research Agency, UmeÄ, Sweden)

    Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest - but not under nitrogen-poor conditions

    Get PDF
    Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes N-15 and H-2 were applied to a small area of the forest floor in stands with high and low soil N availability. Uptake by surrounding trees was measured. The sensitivity of N acquisition to water uptake was quantified by statistical modelling. Trees in the high-N stand acquired twice as much N-15 as in the low-N stand and around half of their N uptake was dependent on water uptake (H-2 enrichment). By contrast, in the low-N stand there was no positive effect of water uptake on N uptake. We conclude that tree N acquisition was only marginally dependent on water flux toward the root surface under low-N conditions whereas under high-N conditions, the water-associated N uptake was substantial. The results suggest a fundamental shift in N acquisition strategy under high-N conditions

    Type Ia Supernova Explosion Models

    Get PDF
    Because calibrated light curves of Type Ia supernovae have become a major tool to determine the local expansion rate of the Universe and also its geometrical structure, considerable attention has been given to models of these events over the past couple of years. There are good reasons to believe that perhaps most Type Ia supernovae are the explosions of white dwarfs that have approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent progress in modeling Type Ia supernovae as well as several of the still open questions are addressed in this review. Although the main emphasis will be on studies of the explosion mechanism itself and on the related physical processes, including the physics of turbulent nuclear combustion in degenerate stars, we also discuss observational constraints.Comment: 38 pages, 4 figures, Annual Review of Astronomy and Astrophysics, in pres
    • 

    corecore