6 research outputs found
Molecular basis of targeted therapy in T/NKcell lymphoma/leukemia: A comprehensive genomic and immunohistochemical analysis of a panel of 33 cell lines
T and NK-cell lymphoma is a collection of aggressive disorders with unfavorable outcome, in which targeted treatments are still at a preliminary phase. To gain deeper insights into the deregulated mechanisms promoting this disease, we searched a panel of 31 representative T-cell and 2 NK-cell lymphoma/leukemia cell lines for predictive markers of response to targeted therapy. To this end, targeted sequencing was performed alongside the expression of specific biomarkers corresponding to potentially activated survival pathways. The study identified TP53, NOTCH1 and DNMT3A as the most frequently mutated genes. We also found common alterations in JAK/STAT and epigenetic pathways. Immunohistochemical analysis showed nuclear accumulation of MYC (in 85% of the cases), NFKB (62%), p-STAT (44%) and p-MAPK (30%). This panel of cell lines captures the complexity of T/NK-cell lymphoproliferative processes samples, with the partial exception of AITL cases. Integrated mutational and immunohistochemical analysis shows that mutational changes cannot fully explain the activation of key survival pathways and the resulting phenotypes. The combined integration of mutational/expression changes forms a useful tool with which new compounds may be assayed
Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia
Following the publication of this article the authors noted that data describing precisely where phosphorylation sites in proteins modulated following JAK1 or JAK3 inhibition in mutant T-ALL samples was not clearly annotated. Therefore an additional sheet has been added to Supplementary Table 2
Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.
Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies
Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile janus kinase inhibition
Janus kinases (JAKs) are required for cytokine receptor signaling. Since the discovery of the highly prevalent JAK2 V617F mutation in myeloproliferative neoplasms (MPNs), JAK2 became a prime target for inhibition. Only one approved JAK2 inhibitor exists, with positive, but not curative effects in MPNs, and promising effects in autoimmune diseases and cancer. Based on recent advances in the structural features regulating both normal and mutant JAKs, as well as in small-molecule targeting, we review the current state of JAK2 inhibitor development and present novel avenues of selecting JAK2 inhibitors, with broad and narrow specificities and extend these approaches to other JAKs