688 research outputs found

    THERMOBAROMETRY OF METAMORPHOSED PSEUDOTACHYLYTE AND DETERMINATION OF SEISMIC RUPTURE DEPTH DURING DEVONIAN CALEDONIAN EXTENSION, NORTH NORWAY

    Get PDF
    Crustal faulting has long been known as the source of shallow seismicity, and the seismogenic zone is the depth (3-15 km) within the crust that is capable of co-seismic slip, largely under brittle conditions. However, some continental seismicity occurs at depths \u3e\u3e 15 km. I performed thermobarometry of mylonitic pseudotachylyte to determine the P-T of a seismogenic extensional fault in the Caledonian Norwegian margin. Two shear zones (Eidsfjord and Fiskfjord) located in northern Norway exhibit brittle extension propagating into the ductile regime of the lower crust as evidenced by the presence of pseudotachylyte. Averages from Eidsfjord (653 ± 38°C and 570 ± 115 MPa) and Fiskfjord (680 ± 70°C and 1121 ± 219 MPa) correspond to depths of co-seismic slip of 21 ±4 km and 41 ± 9 km, respectively. These depths are 5-25 km below the depth of the standard seismogenic zone in mature fault systems, and require another mechanism (e.g. dynamic downward rupture, unusually high shear stresses) to account for seismogenic rupture at such depths. Assuming Eidsfjord and Fiskfjord were uplifted at the same time, and considering they are currently at the same crustal level, Fiskfjord was uplifted a greater amount and at a faster rate as it was initially located at a greater crustal depth

    The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    Get PDF
    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer

    Xenophagy in herpes simplex virus replication and pathogenesis

    Get PDF
    Autophagy functions in part as an important host defense mechanism to engulf and degrade intracellular pathogens, a process that has been termed xenophagy. Xenophagy is detrimental to the invading microbe in terms of replication and pathogenesis and many pathogens either dampen the autophagic response, or utilize the pathway to enhance their life cycle. Herpes simplex virus type 1 (HSV-1) counteracts the induction of xenophagy through its neurovirulence protein, ICP34.5. ICP34.5 binds protein phosphatase 1a to counter PKR-mediated phosphorylation of eIF2α, and also binds the autophagy-promoting protein Beclin 1. Through these interactions, ICP34.5 prevents translational arrest and downregulates the formation of autophagosomes. Whereas autophagy antagonism promotes neurovirulence, it has no impact on the replication of HSV-1 in permissive cultured cells. As discussed in this article, this work raises a number of questions as to the mechanism of ICP34.5-mediated inhibition of autophagy, as well as to the role of autophagy antagonism in the lifecycle of HSV-1

    The Role of Instability Waves in Predicting Jet Noise

    Get PDF
    There has been an ongoing debate about the role of linear instability waves in the prediction of jet noise. Parallel mean flow models, such as the one proposed by Lilley, usually neglect these waves because they cause the solution to become infinite. The resulting solution is then non-causal and can, therefore, be quite different from the true causal solution for the chaotic flows being considered here. The present paper solves the relevant acoustic equations for a non-parallel mean flow by using a vector Green s function approach and assuming the mean flow to be weakly non-parallel, i.e., assuming the spread rate to be small. It demonstrates that linear instability waves must be accounted for in order to construct a proper causal solution to the jet noise problem. . Recent experimental results (e.g., see Tam, Golebiowski, and Seiner,1996) show that the small angle spectra radiated by supersonic jets are quite different from those radiated at larger angles (say, at 90deg) and even exhibit dissimilar frequency scalings (i.e., they scale with Helmholtz number as opposed to Strouhal number). The present solution is (among other things )able to explain this rather puzzling experimental result

    The Aeroacoustics of Slowly Diverging Supersonic Jets

    Get PDF
    This paper is concerned with utilizing the acoustic analogy approach to predict the sound from unheated supersonic jets. Previous attempts have been unsuccessful at making such predictions over the Mach number range of practical interest. The present paper, therefore, focuses on implementing the necessary refinements needed to accomplish this objective. The important effects influencing peak supersonic noise turn out to be source convection, mean flow refraction, mean flow amplification, and source non-compactness. It appears that the last two effects have not been adequately dealt with in the literature. The first of these because the usual parallel flow models produce most of the amplification in the so called critical layer where the solution becomes singular and, therefore, causes the predicted sound field to become infinite as well. We deal with this by introducing a new weakly non parallel flow analysis that eliminates the critical layer singularity. This has a strong effect on the shape of the peak noise spectrum. The last effect places severe demands on the source models at the higher Mach numbers because the retarded time variations significantly increase the sensitivity of the radiated sound to the source structure in this case. A highly refined (non-separable) source model is, therefore, introduced in this paper

    Emission of Sound From Turbulence Convected by a Parallel Mean Flow in the Presence of a Confining Duct

    Get PDF
    An approximate method for calculating the noise generated by a turbulent flow within a semi-infinite duct of arbitrary cross section is developed. It is based on a previously derived high-frequency solution to Lilley's equation, which describes the sound propagation in transversely-sheared mean flow. The source term is simplified by assuming the turbulence to be axisymmetric about the mean flow direction. Numerical results are presented for the special case of a ring source in a circular duct with an axisymmetric mean flow. They show that the internally generated noise is suppressed at sufficiently large upstream angles in a hard walled duct, and that acoustic liners can significantly reduce the sound radiated in both the upstream and downstream regions, depending upon the source location and Mach number of the flow

    Rapid distortion theory on transversely sheared mean flows of arbitrary cross section

    Get PDF
    This paper is concerned with Rapid Distortion Theory on transversely sheared mean flows that (among other things) can be used to analyze the unsteady motion resulting from the interaction of a turbulent shear flow with a solid surface. It expands on a previous analysis of Goldstein, Leib and Afsar (J. Fluid Mech. Vol. 824, pp. 477-51) that uses a pair of conservation laws to derive upstream boundary conditions for planar mean flows and extends these findings to transversely sheared flows of arbitrary cross section. The results, which turn out to be quite general, are applied to the specific case of a round jet interacting with the trailing edge of a flat plate and used to calculate the radiated sound field, which is then compared with experimental data taken at the NASA Glenn Research Center

    Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows

    Get PDF
    This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow

    Effect of Free Stream Turbulence and Other Vortical Disturbances on a Laminar Boundary Layer

    Get PDF
    This paper is concerned with the effect of free-stream turbulence on the pretransitional flat-plate boundary layer. It is assumed that either the turbulence Reynolds number or the downstream distance (or both) is small enough so that the flow can be linearized. The dominant disturbances in the boundary layer, which are of the Klebanoff type, are governed by the linearized unsteady boundary-region equations, i.e., the Navier Stokes equations with the streamwise derivatives neglected in the viscous and pressure-gradient terms. The turbulence is represented as a superposition of vortical free-stream Fourier modes, and the corresponding individual Fourier component solutions to the boundary-region equations are obtained numerically. The results are then superposed to compute the root mean square of the fluctuating streamwise velocity in the boundary layer produced by the actual free-stream turbulence. The calculated boundary-layer disturbances are in good quantitative agreement with the experimentally observed Klebanoff modes when strong low-frequency anisotropic effects are included in the free-stream turbulence spectrum. We discuss some additional effects that may need to be accounted for in order to obtain a complete description of the Klebanoff modes
    corecore