research

The Aeroacoustics of Slowly Diverging Supersonic Jets

Abstract

This paper is concerned with utilizing the acoustic analogy approach to predict the sound from unheated supersonic jets. Previous attempts have been unsuccessful at making such predictions over the Mach number range of practical interest. The present paper, therefore, focuses on implementing the necessary refinements needed to accomplish this objective. The important effects influencing peak supersonic noise turn out to be source convection, mean flow refraction, mean flow amplification, and source non-compactness. It appears that the last two effects have not been adequately dealt with in the literature. The first of these because the usual parallel flow models produce most of the amplification in the so called critical layer where the solution becomes singular and, therefore, causes the predicted sound field to become infinite as well. We deal with this by introducing a new weakly non parallel flow analysis that eliminates the critical layer singularity. This has a strong effect on the shape of the peak noise spectrum. The last effect places severe demands on the source models at the higher Mach numbers because the retarded time variations significantly increase the sensitivity of the radiated sound to the source structure in this case. A highly refined (non-separable) source model is, therefore, introduced in this paper

    Similar works