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This paper is concerned with utilizing the acoustic analogy approach to predict 
the sound from unheated supersonic jets. Previous attempts have been 
unsuccessful at making such predictions over the Mach number range of 
practical interest. The present paper, therefore, focuses on implementing the 
necessary refinements needed to accomplish this objective. The important 
effects influencing peak supersonic noise turn out to be source convection, mean 
flow refraction, mean flow amplification, and source non-compactness. It appears 
that the last two effects have not been adequately dealt with in the literature. The 
first of these because the usual parallel flow models produce most of the 
amplification in the so called critical layer where the solution becomes singular 
and, therefore, causes the predicted sound field to become infinite as well. We 
deal with this by introducing a new weakly non parallel flow analysis that 
eliminates the critical layer singularity. This has a strong effect on the shape of 
the peak noise spectrum. The last effect places severe demands on the source 
models at the higher Mach numbers because the retarded time variations 
significantly increase the sensitivity of the radiated sound to the source structure 
in this case. A highly refined (non-separable) source model is, therefore, 
introduced in this paper. 

1. Introduction 

       The impracticality of directly calculating the sound field from the full Navier-
Stokes equations creates a need for a viable reduced order model for these 
equations--typically referred to as an acoustic analogy following an approach 
initiated by Lighthill (1952). This is analogous to the situation in turbulence 
modeling, which is almost always based on some form of the filtered Navier-
Stokes equations such as the Reynolds averaged Navier-Stokes (RANS) 
equations. While there is some disagreement about the proper choice of 
turbulence modeling equations, the situation in Aeroacoustics is even more 
contentious. Here, there is considerable disagreement about the appropriate 
starting equations. Perhaps because there is no single set of equations that is 
optimal in all situations. There does, however, seem to be a consensus about 
some of the requirements for such equations. First, they should be derivable from 
the Navier-Stokes equations and second, they should be formally linear (Dowling 
& Ffowcs Williams, 1983, p.157).  
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It, therefore, makes sense to describe this phenomenon by dividing the flow 
variables into their mean and fluctuating components. The Navier-Stokes 
equations can then be rewritten as a set of mean flow equations plus a formally 
linear set of equations for the fluctuating component of the motion. And, it turns 
out that the latter can be put into the form of the linearized Navier-Stokes 
equations (about the mean flow) but with source terms whose strengths can be 
represented by a four dimensional stress tensor, whose first 3 dimensions 
correspond to the usual fluctuating Reynolds stress with the additional dimension 
being associated with the stagnation enthalpy fluctuations. The true non-linearity 
of these equations is hidden in the source terms as well as in the non-linearity of 
the dependent variables. The latter causes no particular difficulty in the present 
context because one of these variables (the pressure-like variable) reduces to 
the ordinary pressure fluctuation in the far field. 
 The apparent linearity can be exploited by using a Green’s function 
approach to separate out the so called “propagation effects” from the unsteady 
source fluctuations, which are represented by a generalized fluctuating stress 
tensor in the present approach. The result can then be used to express the far 
field pressure autocovariance  as the convolution product of a “propagator” 
(which can be calculated from the Green’s function) with the two point time-
delayed correlation of the fluctuating stress tensor--which is a statistical entity of 
the type that is typically measured in turbulent flows. It is also the quantity that 
ultimately has to be modeled in the present acoustic analogy approach. It is 
expected that most of the non-local “propagation effects”, which would be very 
difficult to distinguish from the turbulent fluctuations--and, therefore, very difficult 
to model-- have been removed from these stresses. An attractive feature of the 
original Lighthill (1952) approach is that the source strength is represented by a 
single stress tensor, which insures that the far field pressure autocovariance can 
be expressed in terms of a two point time delayed correlation tensor. This 
significantly simplifies the interpretation of the source (Ffowcs Williams, 1963, 
1969) and thereby aids in the construction of appropriate models for this quantity. 
The present result (which is similar to the one in Goldstein (2003)) also has this 
important property which, together with the two requirements set out at the 
beginning of this section, effectively restricts the form of the analogy to relatively 
trivial rearrangements of a single set of equations.  
         Current state of the art noise prediction methodologies, typically, use 
empirical models for the unknown Reynolds stress correlations and RANS based 
approaches (typically of the k-epsilon type) to calculate the mean flow and mean 
turbulent kinetic energy.  The former is then used to calculate the coefficients in 
the Green’s function equations, while the latter is used to determine the 
parameters empirical models for the fluctuating Reynolds stresses. 
         This approach is very general and should, in principle, apply to any 
turbulent flow. But jet flows are nearly parallel, and the mean flow is usually 
approximated by a much simpler unidirectional transversely sheared flow. The 
resulting acoustic equations can then be reduced to a single 3rd order equation – 
frequently referred to as Lilley’s (Lilley, 1972, 1974) equation. 
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         This type of model appears to be adequate for subsonic, unheated jets 
(Khavaran & Bridges, 2004) but becomes unphysical at supersonic acoustic 
Mach numbers where it predicts infinite acoustic pressures.  The difficulty is due 
to the breakdown of the parallel flow model and can be eliminated by retaining 
the correct non-parallel mean flow.  But this would greatly increase the 
complexity of the Green’s function computation. 
 The present paper introduces a perturbation approach that takes 
advantage of the small jet spread rate.  It uses matched asymptotic expansions 
to obtain a locally parallel “outer solution” that applies in the main part of the jet 
where the parallel flow “propagator” is non-singular and a non-singular “inner 
solution” that accounts for the nonparallel flow effects in the vicinity of the so 
called critical layer where the outer (parallel flow) solution breaks down.  The 
results are then combined to obtain a uniformly valid “composite” solution that 
produces physically reasonable results and is still not much more complicated 
than the parallel flow solution. The resulting “propagator” still becomes large 
when the source point is at the critical layer but, unlike the parallel flow result, 
remains finite there. 
       A similar weakly non-parallel flow approach was used by Goldstein and Leib 
(2005) to construct a causal Green’s function that remains finite in the small 
spread rate limit. It results in an additional contribution to the usual parallel flow 
Green’s function that involves the linear instability modes of the jet. It was 
incorrectly stated in that paper that the result, which did not account for the 
critical layer singularity, was uniformly valid everywhere in the flow. The complete 
uniformly valid causal solution can only be obtained by combining the solution in 
the present paper with the Goldstein and Leib (2005) result. But this would be 
extremely complicated and our most recent computations show that the instability 
wave contribution tends to be very small at the relatively low acoustic Mach 
numbers being considered in the paper. We, therefore, decided to neglect that 
contribution (in the manner discussed in section 5) in order to focus on the 
critical-layer effects without introducing undue complication.    
 
      While strong streamwise and relatively weak transverse coherence effects 
preclude the possibility of assuming that the sources are completely compact 
(i.e., of neglecting all variations in retarded time across the sources), it is still 
highly desirable to model the situation as closely as possible. The relevant 
source model should, therefore, account for streamwise variations in retarded 
time and be general enough to account for the long range turbulence correlations 
at the end of the potential core which, in particular, precludes using such 
assumptions as local isotropy and quasi-normality. The model should also be 
simple enough to produce easily computed expressions for the spectral tensor 
components.  The present paper introduces such a model.  Its most general form 
involves a large number of adjustable constants, which can be parameterized 
and subsequently determined from an auxiliary flow calculation. Current state of 
the art noise prediction codes, such as JeNo (Khavaran & Bridges, 2004), usually 
use steady k-ε  based computations for this purpose. But codes of this type only 
provide enough information to determine a small number of these parameters. It 
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is, however, highly likely that higher fidelity methods such as full Reynolds Stress 
Modeling or even hybrid RANS / Large Eddy Simulation approaches will replace 
the steady k-ε  computations. These codes can provide enough information to 
determine many more of the adjustable constants. 
       Previous attempts –typically based on much simpler flow models—have not 
been successful at predicting jet noise over the parameter range of practical 
interest. They are usually unable to adequately predict the sound radiation from 
heated jets or the peak radiation from all supersonic jets. This has even caused 
some writers (see for example, Viswanathan, 2007) to recommend that the 
acoustic analogy approach be abandoned in favor of empirical correlations of the 
jet noise data base. But this approach is unlikely to be very robust beyond the 
parameter range of the available data. The present paper, therefore, focuses on 
implementing the necessary refinements into the acoustic analogy. It attempts to 
demonstrate that good predictions can be obtained when a high level of rigor is 
maintained by minimizing the approximations and keeping the formulas exact 
until the last stages of the analysis in order to make the required approximations 
as consistent as possible. We have chosen to not consider heated jets because 
the available computer codes for producing required information about the flow 
have not been adequately calibrated with an appropriate experimental data base. 
The focus is, therefore, on unheated supersonic jets, but the general formulas 
are applicable to heated jets as well.  
        The important effects influencing peak supersonic noise turn out to be 
source convection, mean flow refraction, mean flow amplification, and source 
non-compactness. It is our contention that the last two effects have not been 
adequately dealt with in the literature. The first of these because, as originally 
noted by Phillips (1960), the usual parallel flow (i.e. Lilley equation) models 
produce most of the amplification in the so called critical layer where the solution 
becomes singular and causes the predicted sound field to become infinite. We 
deal with this by introducing a new weakly non parallel flow analysis that 
eliminates the critical layer singularity. This has a strong effect on the shape of 
the peak noise spectrum. The inability of previous attempts to deal with the last 
effect can be traced to inadequate source models. Retarded time variations can 
significantly increase the sensitivity of the radiated sound to the detailed source 
structure. A much more refined (non-separable) source model is, therefore, 
developed in section 6.2 of this paper. 
    The overall plan of the paper is as follows: First, the basic acoustic analogy 
equations are set out in section 2 and a formal Green’s function solution is 
written down in section 3. The resulting expression for the pressure-like variable 
is an integral of a tensor product of a “propagator” that depends only on the 
mean flow variables, with a generalized four dimensional stress tensor that 
completely characterizes the turbulent velocity/enthalpy fluctuations. The 
propagator depends on the Green’s function for an arbitrary mean flow. The latter 
is simplified in section 4 by assuming that the mean flow is weakly non-parallel. It 
is shown that the strictly parallel flow result breaks down in the so called critical 
layer and matched asymptotic expansions have to be used to obtain a uniformly 
valid (i.e. non-singular) result.   
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      The Green’s function solution of section 3 is used in section 5 to obtain an 
expression for the far field pressure autocovariance in terms of a two-point time 
delayed correlation of the turbulent velocity/ enthalpy fluctuations. This exact 
result, which shows that the far field pressure autocovariance can be expressed 
as a convolution product of a new propagator with this generalized correlation 
tensor, is the fundamental starting equation of this paper. It is used to obtain an 
expression for the far field acoustic spectrum in terms of the weakly non-parallel 
flow Green’s function constructed in section 4, which is then simplified by 
assuming that the transverse correlation length of the turbulence was small 
compared to the transverse length scale of the jet. The resulting expression for 
the acoustic spectrum is now purely algebraic and involves a product of a 
propagator and a generalized spectral tensor that accounts for the turbulent 
velocity/enthalpy fluctuations. It is only at this point that the results are restricted 
to “cold” jets by neglecting the enthalpy fluctuations.   
       The propagation tensor is completely characterized by the mean flow which, 
with the present approach, is to be calculated from a RANS solution. But the 
generalized spectral tensor requires detailed information about the turbulence 
statistics, which can not be directly obtained from the steady RANS solution. It, 
therefore, has to be modeled, which is done in section 6. First “kinematic models” 
which exploit expected symmetry properties of the turbulence correlation 
functions, are introduced in section 6.1 to reduce its large number of independent 
components (45 in all, even if the enthalpy fluctuations are neglected). Then a 
very general correlation function model is introduced in section 6.2 to represent 
the spectra of the surviving components of this tensor. It involves a large number 
of parameters that can be related to the output of the RANS solution by making 
appropriate modeling assumptions. But before doing this, the general results are 
specialized to a round jet in section 7. The modeling assumptions are introduced 
in section 8 and the results are then compared with detailed jet noise 
measurements taken over a number of years at the Glenn Research Center. 
 
2. Basic Equations 
 
Assume that the pressure , densityp ρ , enthalpy h , speed of sound  and 
absolute temperatureT  satisfy the ideal gas law equation of state 

c

 
                                            2, p v /p RT h c T c c R= = =ρ                                  (2.1) 
 
with p vR c c= −  being the gas constant, and and  the specific heats at 
constant pressure and volume, respectively. Then the Navier-Stokes equations 
can be written as  

pc vc

 
                                                       0,D =ρ                                                      (2.2) 
  

                                          ( ) i
i j

ij
pD v
x x

ρ σ∂ ∂
+ =
∂ ∂

                                             (2.3) 
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                                 2 4

1 2 1
i

i j j
i

p pD v
t x

⎛ ⎞ ⎛∂ ∂
+ − = +⎜ ⎟ ⎜− ∂ ∂ −⎝ ⎠ ⎝

σγ ρ σ
γ γ

v ⎞
⎟
⎠

,

                         (2.4) 

 
where  the operator is defined by , 1, 2,3i j = D
 

                                (D j
j

f )f v ft x
∂ ∂≡ +
∂ ∂

                                               (2.5) 

 
for any function f , t  denotes the time, { }1 2 3, ,x x x=x the Cartesian coordinates, 

{ }1 2 3, ,v v vv =  the fluid velocity.  σij   denotes the viscous stress, , 
the scaled heat flux vector, and

( )4 1i iqσ ≡ − γ −

/p vc cγ ≡  the specific heat ratio. 
 
 By introducing the new pressure like variable  
 

                                                             21
2  ep vp γ − ρ ′≡ +                                                  (2.6)                       

the Favre (1969) averaged Navier−Stokes (RANS) equations can be written in 
the virtually identical form 
                                                         
                                                      0,oD =ρ                                                      (2.7) 
  

                                         ( ) e
o i

i j

p
D v e

x x
ρ ij

∂ ∂ ′+ =
∂ ∂

                                            (2.8) 

  

                                2 4

1 2 1
e e i

o i
i

p p e
D v

t x
⎛ ⎞′∂⎛ ⎞ ∂

j je v′+ − = +⎜⎜ ⎟ ⎜− ∂ ∂ −⎝ ⎠ ⎝ ⎠

γ ρ
γ γ

⎟⎟                          (2.9) 

 
where  
 

                                              ( o j
j

fD f v ft x )∂ ∂≡ +
∂ ∂

                                         (2.10) 

 
 
for any function f , the over bars denote the usual time average 
 

                                 ( )1lim , ,
2

T

T
T

t dt
T→∞

−

• ≡ •∫ x                                                (2.11) 

 
with the dot being a place holder for , , ,iv p hρ ,etc. and 
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                                                  ( )ρ ρ• ≡ •                                                   (2.12) 

                                                               
denotes a Favre (1969) average, it being understood that the time derivatives 
drop out of the RANS equations (2.7) to (2.9),  
 
 

                        ( ) ( )2
4

1
1

2i i i i ik kv v ve vν ν ν ν ν
γ −

⎡ ⎤′ ′ ′≡ −ρ + δ ρ + σ + γ − δ σ⎣ ⎦′ ′                 (2.13) 

with , 12 3 4, , ,ν=
  

                            ( ) ( ) ( )2
4

21
11

2 2
v h v c vγ −

γ −⎛ ⎞′ ′ ′≡ + = +⎜ ⎟
⎝ ⎠

′ 2′                     (2.14)     

   

and jνδ denoting the Kronecker delta in the usual notation.   
       The primes denote the fluctuating variables 
 
                   , , , i i i ,p p p h h h v v v′ ′ ′ ′≡ − ≡ − ≡ − ≡ −ρ ρ ρ                      (2.15) 
 
etc., which upon introducing the (non-linear) dependent variables  
                                       

                                        2 21  2ep p v v⎛′ ρ⎜
⎝ ⎠

γ −≡ + ρ − ⎞
⎟′ ′ ′                                        (2.16) 

                                                  
                                            iu vi ,ρ ′≡                                                              (2.17)    
 
can be shown to satisfy the five formally linear equations (Goldstein, 2003) 

 

                                                0,o j
j

D u
x
∂′ + =
∂

ρ                                            (2.18) 

                               i
o i j e ij ij

j i j j

v
D u u p e

x x x x
′∂ ∂ ∂ ∂′ ′′+ + − =

∂ ∂ ∂ ∂
ρ θ
ρ

                     (2.19) 

and 
 

           ( ) ( )2
41 1j iji i

o e j e j ij
j j j j

v u v
D p c u p e e

jx x x x

⎛ ⎞∂ ∂ ∂∂ ∂′ ′ ′′ ′′+ + − − = + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

θ
γ γ

ρ x∂
,        (2.20) 

 
where 
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                                                   ,i j ij e i jp e≡ − ′θ δ                                              (2.21) 
 
is the total mean flow stress tensor, 
 

                                            2c pγ ρ≡                                                      (2.22) 
 
 the square of the mean-flow sound speed, and the source strengths 

, which are given by 1 2 3 4,  , , ,je ν =ν′′
  

                                          ,j je e eμ μ μ≡ j−′′ ′ ′                                                         (2.23) 
  

have zero time average.    
       This shows that the entire acoustic source strength is given by the 
generalized (fluctuating velocity—sound speed) stress tensor 1 2 3 4,  , , ,je ν =ν′′  --
which is an important advantage of the present formulation because it puts all of 
the modeling on the same basis and thereby reduces the probability of 
over/under estimating one component of the source relative to another due to 
differences in modeling requirements (see paragraph following equation(5.29)). 
 
       Notice that (2.7) to (2.9) will constitute a closed system of five equations in 
the five unknowns , ,i ev pρ that can be solved independently of the relation (2.6) 
between the effective pressure ep  and the thermodynamic pressure p once a 
particular turbulence model has been introduced. This is also true for the linear 
system (2.18) to (2.20) in the variables , ,i eu p′ ′ρ ---with their nonlinear relation to 
the physical variables being largely irrelevant because the variable , ,iv p′ρ ′ ep′  
reduces to the acoustic pressure fluctuation p′ in the far field where the sound 
field is to be calculated. 
 
3. Formal Green’s Function Solution for the Far Field Pressure 
         The particular solution to equations (2.18) to (2.20) can, as noted in the 
introduction, be expressed in terms of the vector Green’s function (Morse and 
Feshbach 1953, pp. 878–886) ( ), ,vg tσ τx y , which satisfies   

  

                         ( ) (4
0 5

1 iji
j

j i j
i i

gv
D g g g t

x x x
∂∂∂

+ + − = − −
∂ ∂ ∂

x yσ
σ

σσ σ
θ

)δ δ δ
ρ

τ                (3.1) 

  

         ( ) ( ) (
2

0 4 4 4
11 iji

i j j
i

jc gv
D g g g t

x x x

∂⎛ ⎞∂∂
+ − − + = − −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

x yσ σσ σ
σθ

)γ δ δ δ τ
ρ

       (3.2) 
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                                                            5 ,0o j
j

D g gx σσ
∂+ =
∂

          (3.3) 

for 1, 2,...,5=σ  and can be inserted into Green’s formula to obtain the following 
expression for the pressure like variable ep′ (Goldstein,2006) 
  

                          ( ) ( ) ( ), , , ,e j j
V

p t t τ e τ d dτ ,
∞

μ μ
−∞

′ = − γ∫ ∫ yx x y y′′                                  (3.4) 

where V denotes integration over all space ,the propagator ( )j ,t ,τμγ x y  is 
defined by 

  

                    ( ) ( ) ( ) ( )4
441

j
j j

g ,t v
,t ,τ g ,t

y y
μ μ

μ

∂ τ ∂
γ ≡ − γ −

∂ ∂

x y,
,τx y x y,  (3.5) 

4 0v ≡ , and we have integrated by parts to transfer the derivatives from the 
source term to ( )4 , ,g tν τx y . 
  
4. Weakly Non-Parallel Flow Approximation  
    As noted in the Introduction, the propagator ( )j

,t
μ
γ τy, x can be greatly 

simplified by assuming that the mean flow is locally parallel. In fact, Appendix A, 
which describes the mean flow perturbation expansion,  shows that equations 
(3.1) to (3.3) reduce to the inhomogeneous Rayleigh equations (i.e., the 
equations governing the inviscid instability of a parallel flow) in this limit                                                     
                                 
 

                                 ( ) (4 1 ,o
i j ii

i j

D Ug g g tDt x xσ σ σσ
∂ ∂+ +δ = δ δ − δ −
∂ ∂

x y )τ                    (4.1)                                    

                                                                                                                                   

                              ( ) (2
4 0 4 ,o

i
i

D g c g tDt x σσ σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

)∂+ = δ δ − δ −τ
∂

x y                         (4.2)                                   

                                                      5 ,0o
j

j

D g gDt x σσ
∂+ =
∂

                                                     (4.3) 

     where  

 0

1

.
D

U
Dt t x

∂ ∂
= +
∂ ∂

 (4.4) 
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   is the usual convective derivative. Since the solution to this system will depend 
on 1 1, , ,  x y t τ only in the combinations 1 1  and x y t− −τ  , we put  

  

              

( )

( )
( ) ( ) ( ) ( ) (1 1

1 12

ˆ ; ,

1 , ,
2

T T

i k x y t

g k

e g t d t d x

νσ

− − −ω −τ⎡ ⎤⎣ ⎦
νσ

ω

≡ τ
π
∫∫

x y

x y ) ,y− τ −

 (4.5) 

 where { }2, 3T x x=x and { }2, 3T y y=y denote the transverse components of and 

respectively. The resulting equation for

x

y ( )4ˆ ; ,T Tg σ k ωx y  has a regular singular 
point at the so called critical layer where 

  

                                                                      ( ) 0,kUω− =Tx  (4.6) 

 
and the solution has an infinite singularity there, which (as will  be shown below) 
produces a much stronger singularity in the propagator j lν μγ  (defined below). The 

original singularity in (ˆ ; ,T Tgνσ )k ωx y  can be eliminated by constructing an ‘inner 
solution’ in the vicinity of the critical layer which has continuous pressure and 
normal velocity components but discontinuous tangential velocity components 
(i.e., it has a slip line). However, we do not present the details here because our 
interest is in the corresponding singularity that occurs in the source variable 
y when the observation point is in the far field. This singularity can only be 

found by working with the 4
x

th component of the adjoint vector Green’s function  
        

                                                       ( ) ( ), , , ,ag t g tσν νστ = τy x x y  (4.7) 

which (unlike the direct Green’s function that is determined by equations in the 
observation variables ) is determined by the following set of equations in the 
source variables 

tx,
y,τ  (Morse and Feshbach (1953), p.870; Goldstein (2006)) 

 

                            24 544
4 4

1 0
a aa

j ijai
j

i i j i

vDg gg
g c g

D y y y y
θγ

τ ρ
∂ ∂ ∂∂ −

− + − − − =
∂ ∂ ∂ ∂

4
4

a                         (4.8) 

                  

                             ( ) ( ) (444
441

aa
jai

i j

vgDg
g

D y y
)tγ δ δ

τ
τ

∂∂
− − + − = − −

∂ ∂
x y                              (4.9)        
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                                                     54
4

1 0
a

ij a
i

j

Dg g
D y

θ
τ ρ

∂
− − =

∂
                                                            (4.10)   

where       

                                             ( )i
i

D v
D y

∂ ∂
≡ +
∂ ∂

y
τ τ

                                                                 (4.11)      

Using Appendix A and retaining only terms ( )O ε  leads to  

              ( )120 4 5444
14 4

1

a aa
a ai

j i
i i i j

D g ggUg c U U V g
D y y y Y y y

ε
τ

⎡⎛ ⎞∂∂∂ ∂ ∂
− + − − = + +⎢⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢⎝ ⎠⎣

∂  

  

                   
( )1

2 5444
4 14 1 1 44

1 aa
ja a a

j i i
i i

V ggU Ug g c S g
y y Y Y R

⎤⎛ ⎞∂ ⎛ ⎞∂∂∂ ∂ −
− − + + − + ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ⎥⎝ ⎠⎝ ⎠ ⎦

γδ δ
Y

 (4.12) 

 
 

( ) ( ) ( )10 44 4 14
44

1

a a a
ai

j
i j

D g g g
t U U V g

D y Y y y Y

⎡⎛ ⎞∂ ∂∂ ∂ ∂
− − = − − + + + +⎢⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢⎝ ⎠⎣

x yδ δ τ ε
τ ∂

 

 

 ( ) 441 ja

j

V Ug
y Y

⎤⎛ ⎞∂ ∂
− − + ⎥⎜ ⎟⎜ ⎟∂ ∂ ⎥⎝ ⎠⎦
γ  (4.13) 

  

                     ( )10 54
54 14

1

a
a a

j
j

D g SU U V g g
D Y y y R

⎡⎛ ⎞∂ ∂ ∂ ⎤− = + + −⎢⎜ ⎟ ⎥⎜ ⎟∂ ∂ ∂ ⎦⎢⎝ ⎠⎣
ε

τ
 (4.14) 

 

where  and 2,3j = 0 /D Dτ  is defined by (4.4). 
 
4.1 The ‘Outer Solution’ 
        
Equations (4.12) to (4.14) suggest that agνμ should expand like 
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                                                   ,0 ,1a a a

v vg g g= + +…νμ μ με                                         (4.15) 

in any region where it  is nonsingular and that the lowest order term can be 

expressed in terms of the single scalar Green’s function  

,0agνμ
( ), ,aG ty xτ   by   

                                               

                         
2

,0 2 ,00 0
4 4 2

1
2 ,

a
a a
i

i i
4

aD D GUg c G g
y D y y D

⎛ ⎞∂ ∂ ∂
= − + =⎜ ⎟∂ τ ∂ ∂ τ⎝ ⎠

 (4.16) 

which satisfies the 3rd order equation           

     ( ) ( )
3

2 20 0
3

1
2

a a
a

i i j j

D G D G Uc c G
y y D y y yD

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂
− + = δ − δ − τ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ τ ∂ ∂ ∂τ⎝ ⎠ ⎝ ⎠

x y t         (4.17)   

 
in this region. 
        Since the coefficients in (4.12) to (4.14) are independent of time and only 
depend on 1y  through the slow streamwise variableY its solution should depend 
on 1 1, ,  and  x y t τ only in the combinations 1 1  and x y t− −τ . And it, therefore, 
makes sense to put  

         

( )

( )
( ) ( ) ( ) ( ) ( )1 1

4

4 12

ˆ , ; , ,

1 , , ;
2

a
T T

i k x y t a

g Y k

e g t d t d x y

ν

− − −ω −τ⎡ ⎤⎣ ⎦
ν

ω ε

≡ τ ε − τ
π
∫∫

y x

y x 1−

             (4.18) 

 It then follows from (4.16) that 

 

                

( )
( )

( )
( )

( ) ( )

2
,0 2 0

4 2

2
,0 2

14 02

2,0
44 0

ˆ
ˆˆ 2 =  , i=2,3

ˆ ˆˆ

ˆ ˆˆ

a a
i

i i i

a a

a a

GU cg c i Uk k G
y y yUk

ikcg c k Uk G G
Uk

ig Uk G G
Uk

⎫⎡ ⎤ ∂∂ ∂
= − ω− − ⎪⎢ ⎥∂ ∂ ∂ ⎪ω−⎣ ⎦

⎪
⎪
⎪⎪− ⎬= − ω− =
⎪ω−
⎪
⎪
⎪− ⎪= − ω− =

ω− ⎪⎭

(4.19) 

                                    
where 
  
 ( )0

ˆ , ; ,T TG Y k ω ≡y x  
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( )( )
( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )

1 1

3

1 12

3

, ,
2

ˆ                                                    , ; ,

T i k x y t a

a
T T T

U k
i e G t d t d x

i U k G Y k

− − −ω −τ⎡ ⎤⎣ ⎦
ω −

− τ
π

≡ − ω− ω

∫∫
y

y x

y y x

y− τ −

 (4.20) 

 
Is determined by   

                                                ( )
( )2

ˆ
2
T T

k oG
δ −

=
π

x y
L  

 

                                    
( ) ( )

2 2 2

2 21 2,3     k
j j

c k c j
y ykU kU
∂ ∂

≡ + −
∂ ∂− ω −ω

L =           (4.21) 

(Afsar et al (2006) show that this formulation is computationally advantageous 
when the mean flow is only known at a discrete number of points)Then, 
corresponding to (4.15) 
 

( ) ( ) ( ),0 ,1, ; , , , ; , , ; , ,ˆ ˆ ˆT T T T T T
a a a

v vY k Y k Y kg g gνσ σ σω ε ω ω εε= +y x y x y x …+        (4.22) 
 
 in the region where ˆ agνμ  is nonsingular, and the leading order term satisfies  

                               ( ) ( ),0 2 ,0 ,0
14 44 54ˆ ˆ ˆ 0a a ai Uk g ik c g gω− − + + =

 

                       ( )
,0,0

,0 ,0 2 5444
4 14

ˆˆ
ˆ ˆ 0,   for 2,3

aa
a a
i

i i i

ggUi Uk g g c i
y y y

ω
∂∂∂

− − + − − = =
∂ ∂ ∂

                    (4.23) 

 

                                 ( )
( )

( )
,0

,0 ,04
44 14 2

ˆ 1ˆ ˆ
2

a
a ai

i

g
i Uk g ikg

y
ω δ

π

∂
− − − + = −

∂ T Tx y  (4.24) 

 ( ) ,0
54ˆ 0ai Uk gω − =  (4.25) 

there. The fifth component, , which is determined independently of the 
remaining components by 

,0
54ˆ ag

(4.25), is indeterminate at this stage of the analysis. 
        These equations also have a regular singular point in the vicinity of the 
critical layer which passes through the line of singular points, say T cy = y , where 
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                                                                   ( ) 0.kUω− =cy  (4.26) 

The resulting solution will exhibit a strong infinite singularity when the source 
variable Ty approaches this point, which can be attributed to the breakdown of 
the parallel flow model. It can be eliminated by constructing a local non-parallel 
flow solution in the vicinity of this point--referred to here as the “inner solution”. 
The critical layer, which disappears when the source variable cy moves onto the 
jet centerline, will lie on the level curve/surface ofU , say , where the dominant 
balance of the outer (parallel flow) solution turns out to be (Wundrow, & 
Goldstein 1994) 

cS

 
 

          
( ) ( ) ( ),0

4 2

ˆ , ˆˆ ˆ, , ln ,   Ta
T T

a s Y
g b s Y c s Y y y

y
σ

σ σ σ σ⊥ ⊥

⊥

= + + +
x

x x … 1, t=  

          
( ) ( ),0

4 4
4

ˆ ,
ˆ ˆ , lnTa

T

b s Y
g c s Y

y⊥ ⊥
⊥

⊥= +
x

x …,  y⊥ +   

             

( ) ( ) ( )4,0
44 4 4

,0
54

2

  
ˆ , ˆˆ ˆ, , ln

ˆ

Ta
T T

a

a s Y
g b s Y y c s Y y y

y

g

⊥
⊥

⊥
= + +

=

x
x x …

………

,⊥ +

n

           (4.27)                               

  
where the  are completely determined by the outer solution while the 
dots in the last equation are meant to reflect the indeterminacy of at this point 

in the analysis, denotes the transverse distance along and   
denotes the perpendicular distance to this surface, i.e., the distance in the 
direction of its unit normal  (see figure 1). 

ˆˆ ˆ, ,a b cν ν ν…
,0

54ˆ ag

s cS ( ) ˆTy⊥ ≡ − ⋅cy y

n̂
 
4.2 The ‘Inner Solution’ 
 
         The solution in the ‘inner region’ ( ) (ˆ/ /Ty y O⊥ ⊥≡ = − ⋅ =δ δcy y n )1 , 
where denotes an appropriate scale factor for the critical layer, should therefore 
expand like         

δ

 
          

            
( ) ( ) ( )

( ) ( ) ( ) ( )

2 0 1 1 2
4 4 4 4

1 0 1 2 3
4 4 4 4 4

ˆ , , , , , , ,      1,

ˆ , , ln , , , , , , ,  

a

a

g g y s Y g y s Y g y s Y t

g g y s Y g y s Y g y s Y g y s Y

σ σ σ σδ δ σ

δ δ δ

− −
⊥ ⊥ ⊥

−
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

= + + + =

= + + +

…

…+
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            ( ) ( ) ( )1 0 2
4

1
4 44

   
ˆ , , , , , , ,  =4,5ag g y s Y g y s Y g y s Yνν ννδ δ−

⊥ ⊥ ⊥= + + +… ν       (4.28) 

 
Then, since the distinguished limit corresponds toδ ε= , 
 

                                       

                            ( ) ( )2 211
2

T
s sc sch h s y h s

s ⊥

∂ ′ ′′≡ = + δ + δ +
∂
y …y⊥                                 (4.29) 

 
and, for any function ( , , )f f y s Y⊥= ,the chain rule implies that  

  

       ( )
,

1

,
c

y s y s

yyf f f f f O
Y Y y Y Y y Y

⊥

⊥ ⊥⊥ ⊥

∂∂∂ ∂ ∂ ∂ ∂ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + ε⎢ ⎥∂ ∂ ∂ ∂ ∂ δ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
= =

Ty
 (4.30) 

where ˆc cy ≡ ⋅y n , the subscript c  indicates that the quantity is to be evaluated at 

cy  and the primes denote differentiation with respect to y⊥ , the lowest order 
terms in these expansions should satisfy 
 

                                         
00

0 2 5444
14 0    c c

gg
g U c

y y⊥ ⊥

∂∂′ − − =
∂ ∂

                               (4.31) 

                         ( )0 2 0 0
14 44 54 14 ,  c

c c c c
y

ikU y g ik c g g V U g
Y y⊥

⊥

∂ ∂⎛ ⎞′ + + = −⎜ ⎟∂ ∂⎝ ⎠
0  (4.32) 

 ( )0 2 0 0
4 44 54 ,c

c t c c c t
y

ikU y g c g g V U g
s Y⊥

⊥

∂∂ ∂⎛ ⎞′ − + = −⎜ ⎟∂ ∂⎝ ⎠
0
4y∂

 (4.33) 

 

                                           
00

0 44
14

1 1 0t s
s

h gh g
ikg

h h s y
⊥⊥

⊥ ⊥

⎛ ⎞∂∂
− + =⎜ ⎟∂ ∂⎝ ⎠

 (4.34) 

                    0 0
54 54 14 ,c

c c c c c c
c

y UikU y g V U g U V U g
Y y Y⊥

⊥

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞′ ′= − − +⎢ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎣ ⎦
0

⎥  (4.35) 

                                                     
1

4 0sh g
y

⊥

⊥

∂
=

∂
                                                 (4.36) 
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21

1 44
14

1 1 0t s
s

h gh g
ikg

h h s y
⊥⊥

⊥ ⊥

⎛ ⎞∂∂
− + =⎜ ⎟∂ ∂⎝ ⎠

 (4.37) 

32 0
0 2 044 14
44 14 44

1 1 ,t c
c c

s
s

h gh g y g
ikU y g ikg V U g

h h s y Y y Y
⊥⊥

⊥
⊥ ⊥ ⊥

⎛ ⎞∂∂ ∂ ∂∂⎛ ⎞′ + − + = − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
c  (4.38) 

where  ( ), ˆ ,c cV Y≡ ⋅V y n
  

                    ( ) ( ) ( )2 21. .
2

T
c c ch h s h s y h s

U s
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

∂⎛ ⎞ ′ ′′≡ = + δ + δ⎜ ⎟∂⎝ ⎠

y …y +                      (4.39) 

  These results were obtained by using (A.12), (A.13) and (A.16) to get (4.35), 
and retaining  higher order terms in equations (4.34) and (4.36) to (4.38)in order 
to circumvent the complexity of using the expansions (4.29) and (4.39). 
       
        The first of these equations, which can be written as 
 

                                                                        0
14 ,cg U

y⊥

∂′ =
∂
γ

                                                       (4.40) 

where 
                                                                     2 0 0

44 54 ,cc g g≡ +γ                                                      (4.41) 

can be used to eliminate in the 20
14g nd  equation to obtain 

                                           

                                         
2

2
2 2   y

yy
γγ α γ⊥
⊥⊥

⎛ ⎞∂ ∂
− +⎜ ⎟∂∂ ⎝ ⎠

0 ,=                                 (4.42) 

where 
 

                                           2

2

c

c
c c

U
ik

y
V U

Y

′
≡

∂⎛ ⎞−⎜ ⎟∂⎝ ⎠

α                                          (4.43) 

 
 
The solution to these equations that matches onto the 1st and last of equations 
(4.27) is 
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                                   ( ) ( )2 2 2 2 2
4

2ˆ2 exp. xp.c

y
a c y eγ α α dα η⊥

⊥

η
∞

= −∫                  (4.44) 

and 

         ( ) ( )
2 2

0 2 2
14 4

22 ˆ exp. xp.c

c y

c
g a y

U y
eα

α 2 dα η η⊥
⊥

⊥

∞
∂

=
′ ∂

−∫  (4.45) 

        These results, along with those of Appendix B which contains the details of the 
critical layer expansion, show that the inner expansion for the Fourier Transform 

(4ˆ , ; , ,a
T Tg Y kν ω εy x )  of adjoint vector Green’s function ( ), ,agσν τy x t  can be 

summarized as follows: 
 

                                   ( ) ( )
2

2 4
44 54

ˆ2ˆ ˆa a c
c

c a
c g g w y O

α
α ε

ε ⊥+ = +  (4.46) 

                                                    ( )
2 2

4
54 2

ˆ
2

ˆ a cc a d w y
d y

g α
α ε ⊥

⊥

=  (4.47) 

                                       ( ) (
2

4
14

ˆ2ˆ 1a c

c

c a dg w y
U d y

Oα
α

ε ⊥
⊥

=
′

+ )  (4.48) 

                                             ( ) (
2

4
4

ˆ2ˆ 1c
t

c

c a dg w
ikU s d y
α α

ε ⊥
⊥

∂
= − +

′ ∂
)y O  (4.49) 

 

                                       ( )
2

2 24
4 4

ˆ2 1ˆ ˆc
c

c

c a
g h k c a

h s sikU
α α

ε⊥ ⊥
⊥

⎛ ⎞∂∂
+⎜ ⎟

⎜ ⎟∂ ∂′ ⎝ ⎠
= − w y⊥  (4.50) 

 
                     

2 044
14 142

ˆˆ1 1 1ˆ 2
aa

a t c
c c c

c

s
s

h gh g y
ik g V U y U g

Y h h s y Y yc
α γ⊥⊥

⊥
⊥ ⊥ ⊥

⎡ ⎤⎛ ⎞ ⎛ ⎞∂∂ ∂∂ ∂⎛ ⎞⎛ ⎞ ′− + + + = − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
 
                                                                                     

                                                                                                 ( )1ˆ 1 da w
d y

α
α ⊥

⊥

y
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 (4.51) 
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where equations (4.34) to (4.38) and (B.3) were used to obtain (4.51) and we 
have put (Abramowitz & Stegun, 1965, p.297) 
         

   ( ) ( ) ( )2 2 2 2exp. xp.
y

w y y e d⊥ ⊥

⊥

∞
≡ − =∫α α α α η η  

   
( ) ( ) 3 3

2
1 1                  as  

2 2 4
y

erfc y y
y y

e ⊥ ⊥
⊥ ⊥

⊥ → + + →…
απ α α

α α
∞

ˆ

 (4.52) 

and  

                                                                      4ˆ .ca ikU a′≡    (4.53) 

 Corresponding to(4.27),  should behave like  0Ĝ
 

                  ( ) ( ) ( )2 3
0

ˆˆ ˆ ˆ, , , , , , ln   as  0G a Y s b Y s y c Y s y y y⊥ ⊥ ⊥+ + +x x x∼ … ⊥ →      (4.54) 

where 0 0
ˆˆ

y
a G

⊥=
=  is defined by (4.53) and 

 

                                             
2

24
42

1b̂= c

c

c a
h k

s sh c
⊥

⊥

⎛ ⎞∂∂
+⎜

⎜ ∂ ∂⎝ ⎠
− a ⎟

⎟
 (4.55) 

We are ultimately interested in using these results to obtain a uniformly valid 
expression for the space-time Fourier Transform of propagator (3.5) which, in 
view of(4.7) an (4.18), will depend on ( )4ˆ , ; , ,a

T Tg Y kν ω εy x  and its derivatives with 

respect to Ty  (see(5.14)-(5.17) below). This will be accomplished by using the 
product rule (i.e., multiplying the inner and outer solutions and dividing the result 
by their common part in the overlap domain (Van Dyke,1975) to combine the 
inner and outer expansions for ( )4ˆ , ; , ,a

T Tg Y kν ω εy x .The most singular 

contributions come from the derivatives 4ˆ /  ,  2,3 ; ia
i jg y j j∂ ∂ = ≠  with a typical 

term being .  Equations 14ˆ /ag y⊥∂ ∂ (4.19) and (4.48) show that the inner and outer 

expansions for this quantity are given by ( )2
0

ˆ / /ik c G Uk yω ⊥
⎡ ⎤− ∂ −⎣ ⎦ ∂  and 

( ) ( )2 2
14 4ˆ ˆ2 / /a

c cg c a U d w y dα εδ α ⊥′= 2y⊥  and equations (4.52) and (4.54) show that 

they will match in some overlap domain where  and 1y⊥ 1y⊥ . It therefore 
follows from the product rule that  
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       ( ) ( ) ( )
2 2

20
14 2uniformly validˆ /a c G dg y ik w y y

y Uk d y
α α

ω⊥ ⊥
⊥ ⊥

⎡ ⎤ ⎡ ⎤∂
∂ ∂ = − ⎢ ⎥ ⎢∂ −⎢ ⎥ ⎣ ⎦⎣ ⎦

⊥⎥           (4.56) 

is a uniformly valid approximation to 14ˆ /ag y⊥∂ ∂  that remains bounded at  
and reduces to the appropriate inner and outer solutions within their respective 
domains of validity. 

0y⊥ =

 
5. The Far Field Spectrum   
 
   The focus of this paper is on predicting the acoustic spectrum  
 
              

                    ( ) ( )21 , ,
2

i tI e p t dt
∞

ω
ω

−∞

≡
π ∫x x                              (5.1) 

 
which is just the Fourier transform of the far-field pressure autocovariance  
defined by  

  

                                     ( ) ( ) ( )2
0

1, , ,
2

T

T
0 ,p t p t p t t

T −

′ ′≡ ∫x x x dt+                                   (5.2) 

where denotes some large, but finite, time interval. (In most cases, capital 
letters will be used to denote Fourier transforms of the corresponding lower case 
quantities)  Then, since 

T

ep p′ ′→ as ,x → ∞ equation (3.4) can be inserted 
into(5.2), and the integration variables changed to 1 2t t -≡ τ and 1 2τ ≡ τ − τ , to 
obtain 
 

( )

( ) ( ) ( ) ( )

2
0

2 l 1 2 1

,

1 , , , e ,
2

 

T

j o l j
T V

p t

t t t e d d d d dt
T

∞

−∞

ν μ ν μ
−

≡

′′ ′′γ + − τ γ − τ τ τ τ τ∫ ∫∫ ∫∫ 1

x

x y x y y y y y 2

( ) ( ) ( ), , ; ,j o l j l
V

t t t d d dt d
∞

−∞

ν μ ν μ= γ + + τ γ − τ τ∫∫ ∫∫ 1x y x y y y y y y1 1 1 11 11 1R ,       (5.3) 

  
where we have taken the liberty of using the same symbol to denote slightly 
different functions and put 
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                                                     ( ) ( )j j
,t ,t ,τ ,ν ν

γ − τ ≡ γx y x y                                       (5.4) 

                                 ( ) ( ) ( )1; , , ,
2

T

j 0 l 0
T

j l τ e τ e τ τ dτ
T ν μ

−
ν μ ′′ ′′≡ +∫y y yη ηR 0+        (5.5) 

 
is the modified fixed frame density-weighted, fourth-order, two-point, time-
delayed fluctuating velocity correlation and 
 
                                                       ≡ −η 1y y                                                  (5.6) 
 
denotes the separation vector between the points. This result can be put into a 
more transparent form by introducing a new propagator j lν μγ , defined in terms of 

the original propagator ( )j
,t ,τ

μ
γ x y  by 

                   ( ) ( ) (1, ,j l j lt t t
∞

ν μ ν μ
−∞

γ + τ ≡ γ + + τ γ +∫x y;η x y x y η )1 1, t dt                     (5.7) 

                                                                                                               
 
 to obtain the following, more compact, expression 

                       ( ) ( ) ( )2 , ; , ; ,j l j l
V

p t t τ τ d d dτ
∞

ν μ ν μ
−∞

= γ +∫ ∫∫x x y η y η y ηR                  (5.8) 

for the far-field pressure autocovariance in terms of the four-dimensional two- 
point, time-delayed momentum/enthalpy flux correlation tensor .   ( ); ,j l τν μ y ηR
    This result is essentially exact, but the source correlation can contain purely 
convective, and therefore non-radiating, components. In an effort to minimize 
such components (in the Lighthill equation context), Ffowcs Williams (1963) 
introduced a moving frame correlation tensor which, with the present formulation, 
is appropriately defined by 

                                     

                                       ( ) ( )ˆ; , ; , ,M
j l j l cτ U τ τν μ ν μ≡ +y yR Rξ ξ i                                             (5.9) 

  where  

                                                                                                                            (5.10)
denotes a moving frame coordinate system, with being the “convection 
velocity” of the turbulence. And since this objective is consistent with the 
philosophy of this paper (as outlined in the Introduction), we insert 

ˆ
cU τ≡ −ξ η i

cU

(5.9)into (5.8) 
to obtain        
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          ( ) ( ) ( )2 ˆ, ; , ; ,M
j l c j l

V

p t U τ t τ τ d d dτ .
∞

ν μ ν μ
−∞

= γ +∫ ∫∫ ix x y y yR ξξ + ξ                   (5.11) 

 
The modified fixed-frame correlation ( ); ,j l τν μ y ηR is related to the autocovariance 
of the generalized  velocity/enthalpy Reynolds stress tensor 

 

( ) ( ) ( )1; , , ,
2

T

j j 0 l l 0 0
T

j lR τ v v v v τ v v v v τ τ dτ
T ν ν μ μ

−
ν μ ⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′≡ ρ − ρ ρ − ρ + +⎣ ⎦ ⎣ ⎦∫η ηy y y  (5.12) 

(which is about as close as you can get to what is actually measured in turbulent 
flows) by the simple linear transform 

                 ( )
21 1 ,

2 2j jlj j l kk l l jkk lR R Rν νν μ ν μ μ μ ν μ
γ − γ −⎛ ⎞= − δ + δ + δ δ⎜ ⎟

⎝ ⎠
R iikkR             (5.13) 

with an identical relation holding  between the corresponding moving  frame 
correlation tensors  . ( ); ,M

j l τν μ y ξR ( )and ; ,M
j lR τν μ y ξ

         The far-field spectrum can be calculated by taking the Fourier transform in 
time of (5.11) and noting that (5.7)  is of convolution form (Morse and Feshbach, 
1953, p.465) to obtain  
 

    ( ) ( ) ( ) ( )* ˆ2 ; ; , ,i τ M
j l c j l

V

I U τ e τ d dτ
∞

− ω
ω ν μ ν μ

−∞

= π Γ ω Γ + + ω∫ ∫x y x y x y i yξ ξR ξ  (5.14)  

where 
                     

                               ( ) ( ) ( )1 ,
2j

i t
j te d tν

−∞

∞
ω −τ

νΓ ≡ − τ
π

γ −∫ x y τ                  (5.15) 

is the Fourier transform of jνγ  and we have introduced ( )Iω |x y ,the acoustic 
spectrum at x due to a unit volume of turbulence at y , i.e., 
        
                        ( ) ( )

V

I I dω ω= ∫x x y y                        (5.16)                      

in order to make the formula more transparent.    
      
            Appendix A and equations(3.5),(4.7),(4.18) and(5.15) imply that  
 

( ) ( ) ( )1 1
4j

ik x y a
T T

j
; ˆe g ,Y ;k ,

yν

−
ν

⎡
Γ ω ≡ ⎢

⎢⎣

∞
∂ ,ω ε
∂

−∞
∫x y y x  
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              ( ) ( ) ( ) ( )1 1
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T, y
y x  (5.17) 

to lowest order of approximation, where the integration contour would have to be 
deformed below the real axis in order to pick up the contribution from the 
instability waves if the Green’s function were required to be causal (Goldstein & 
Leib, 2005). But our most recent studies suggest that this contribution should be 
fairly small for cold (i.e., unheated) jets at the relatively low supersonic Mach 
numbers being considered here. Then, since our focus is on jets of this type, we 
tentatively neglect it by requiring that the integration contour lie along the real 
axis. It can easily be incorporated, especially if it is assumed that it is 
uncorrelated with the non-causal contribution.  
         The result is much simpler in the far field where ( )TU x → 0, 2 2c c∞→  = 
constant, and 

                        
( )

( )
2 2

4 4

/
ˆ , , ,   as ,    

T
a a

T T
T

x k ceg k Y
x

∞

ν ν

− − ω
→ ϕ ω yG x →∞  (5.18) 

                  
where we have used (4.5),(4.7),(4.18)and (4.21) (with jy  replaced by 

jx ), T Tx ≡ x  and 1
2tan / 3x x−ϕ ≡ denotes the circumferential angle. Inserting this 

into equation(5.17), and using stationary phase to evaluate the integrals, shows 
that 
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1 441 , cos , , i y ca
T

j

U Y
Y e

y c
∞− ω θ
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T, y
yG                     (5.19) 

 
where x ≡ x , (1sin /T )x x−θ ≡ denotes the polar angle measured from the 
downstream jet axis (see figure 2) and the term in curly brackets should be 
interpreted as an operator that operates on everything to its right. So that, in 
particular, / iy∂ ∂ acts on 1 cos

4
i y c ae ∞− ω θ

νG . This result is valid for all values of Ty , but 
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when Ty does not lie within the critical layer, equations(4.19) and (4.20) can be 
inserted to show that 
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(5.20) 

where   
                                       

                                         ( ) ( ), , /M Y U Y c∞≡T Ty y                                                            (5.21) 

denotes the “acoustic” Mach number, ( )0 , , ,Tkϕ ω yG Y is defined by  
 

                           
( )

( )
2 2/

0 0
ˆ , , , ,    as 

x k ceG k Y
x

⊥ ∞− − ω

⊥
⊥

→ ϕ ω TyG x →∞               (5.22) 

and the term in curly brackets should again be interpreted as an operator that 
operates on everything to its right. 
         This result is important because it provides an explicit representation of the 
singularity that will occur in the propagator when the parallel flow model is 
invoked. It shows, for example, that there is a singularity in the transverse source 
variable Ty whenever                                           
                                           ( ), 1 / cosTM Y .= θy                                           (5.23) 
 
and that the strongest singularity in ( ),ij T YΓ x y , which results from differentiating 

the first term in(5.20), is . This is a strong non-integrable singularity that 
will cause the far field pressure to become infinite and must, therefore, be 
eliminated (by using the uniformly valid non-parallel flow components  given in 
Appendix C) before meaningful predictions can be made.  

( 3O y−
⊥ )

       
      Streamwise correlation lengths seem to be very long in certain regions of the 
flow (J. E. Bridges, personal communication) and it is therefore necessary to 
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account for retarded time variations in that direction. But the transverse variation 
can also be important at sufficiently high Mach numbers. We assume that the 
transverse correlation lengths are small compared to the cross stream 
dimension, say  of the mean flow. Then,D ( ), ;l T Y∗

μΓ +Tx y ξ ω , which scales with 

 and the acoustic wave lengthD /c∞ ω , can only vary significantly over the 
correlation volume when /D c∞ω  is large. In which case ( ), ;l T Y∗

μΓ +Tx y ξ ω  can 
be represented by its high frequency or WKBJ approximation* (Khavaran, 
Bridges & Georgiadis, 2005)  
   

                      ( ) ( ) (, ; , ; exp , ,l lY A Y i S Y
c

∗
μ μ

∞
)⎡ ⎤ω

Γ ω ≈ ω ϕ θ⎢ ⎥
⎣ ⎦

T Tx y x y yT              

(5.24) 
where ( , ;lA Yμ ωTx y )  expands like          
              
 

                       ( ) ( ) ( ) ( ) ( ) ( )
2

0 1 2, ,l l lA Y A Y A Y
c cμ μ μ
∞ ∞

⎛ ⎞ω ω
+ + ⎜ ⎟

⎝ ⎠
T Tx y x y x y ,T          (5.25)  

and ( , ,S ϕ θ Ty )Y , which satisfies the Eikonal equation  
  

                     ( ) ( ) ( ) 2 2 2 21 cos / cos ,TS S M c c∞∇ ∇ = − θ −⎡ ⎤⎣ ⎦T Ty y yi θ  (5.26) 

varies on the scale of .D  It is, therefore, relatively constant over the correlation 
volume and can be expanded in a Taylor series for variations on this scale to 
obtain  
 

       ( ) ( ) (, ; , ; exp , ,l T l TY Y i S
c

∗ ∗
μ μ

∞
)Y

⎡ ⎤ω
Γ + ω ≈ Γ ω ∇ ϕ θ⎢ ⎥

⎣ ⎦
⋅

TT T yx y ξ x y ξ yT         (5.27) 

 
which allows us to write the formula (5.14) for the far field spectrum in the purely 
algebraic form 
        ( )Iω →x y  
 
 
 
 
*Actually, the solution can be a sum of terms of this form, but the final result turns 
out to be the same and we therefore consider only the single term for the sake of 
simplicity. 
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                                                                                              as x →∞          (5.28) 
 
which depends on the turbulent source correlations only through the spectral 
tensor 
                         

        ( ) ( ) ( )1 1
1
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2

ii MT
j l

V
j l

kk e e
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− ωτ
⊥ ν μ

−∞

∗
ν μ

ξ +
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π ∫ ∫ Tk ξy; k y ξ ξRi ,d dτ

)

               (5.29)  

where the asterisk is being used to denote complex conjugates.  The comment 
following equation (5.23) implies that the strongest critical layer singularity in this 
result is now when non-parallel flow effects are neglected! ( 6O y−

⊥

    The presence of the enthalpy source 4 je′ , significantly increases the complexity 
of these results. But equations (2.13),(2.14) and (2.23) suggest that the 
dimensionless ratio, 4 /j J i jUe′ e′  (which determines the relative importance of 

4   and j i je′ e′  in the acoustic analogy equations, where JU denotes a characteristic 

jet velocity)should be ( 1 / )JO v U′  for cold, i.e. unheated, jets when  the Mach 

number is , (see, Lilley,1996 and Morfey, Szewczyk, & Tester,1978), 

because is expected to be 

( )1O
2c ′ ( )2

1O v′ in this case. The enthalpy source 4 je′  should 
then be small and can, therefore, be set to zero if we focus on cold jets—which 
we now do for the reminder of the paper. It is, of course, possible that equation 
(5.28) can still produce reasonable predictions even for hot jets. But this would 
require modeling many cross-coupling terms that would be difficult to estimate 
from any standard RANS based code. It may, however, be possible to do this by 
extending a RANS code to yield information about the RMS temperature 
fluctuations (as was done by Khavaran and Kenzakowski, 2007) if the velocity 
and sound speed fluctuations are assumed to be uncorrelated in the sense that  
 

                           ( )* cos , 1 cos    j l cc
S M

cν μ
∞ ∞

⎛ ⎞ω ω
Φ θ ∇ ω − θ⎜ ⎟

⎝ ⎠Tyy; , 0=  (5.30) 

when --but the result may be worse than neglecting   and either  or =4μ ≠ ν μ ν

4 je′ entirely, because the velocity and enthalpy (sound speed) fluctuations may 
interfere destructively (Freund,2002).We, therefore, assume that , i.e., that 4 0je′ =
(5.30) holds whenever is equal to 4.Then since   or   μ ν (5.12) and (5.13) show 
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that   is symmetric in its first two and last two indices,  equation *ijklΦ (5.28) can 
now be written as 
 

( )

( ) ( ) ( )
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y
2 2    sin * cos , 1 cosij T T i jk l ckl c
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G G S M
x c c
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x y
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                                                                                         as x →∞                (5.31) 
where the symmetric propagator 
                     

                    ( ) ( ) ( ) (1
2ij T ji T ij T jiG G )⎡ ⎤= ≡ Γ + Γ⎣ ⎦Tx y x y x y x y                    (5.32)

still has six independent components, but only certain combinations of these 
appear in the simplified formulas (see section 6.1, below) used in the actual jet 
nose predictions presented in section 8 of this paper. Appendix C uses the so-
called “product rule” (Van Dyke,1975) along with the results of Section 4 to obtain 
appropriate uniformly valid expressions for these quantities. 
 

      The critical layer lies at the transverse location T cy = y determined by(5.23). 
Figure 3 is a sketch of its overall configuration for a round jet. It shows that the 
critical layer usually moves inboard from the lip line toward the jet axis with 
increasing downstream distance and fixedθ  and that, while the initial migration 
tends to be relatively slow, it quickly moves onto the jet centerline and 
disappears just after reaching the end of the potential core. The right angle 
intersection is shown because ( ),TU U y Y= and 

                                            

                                                  / 0  for  c cy yU U y y⊥ ⊥=
′ 0c≡ ∂ ∂ = =  (5.33) 

in this case while the data seems to suggest that ( ) (1c
U / Y O∂ ∂ = ) . So it follows 

from equation (B.2) that must be infinite there. This behavior is expected 
to be generic because the on-axis mean-flow will usually behave as if it were 
axysymmetric. 

/cdy dY

    The upstream critical layer thickness, say cδ , is also shown in figure 3. 
Equations (4.43) and (4.52) imply that it will become infinite when the critical 
layer reaches the jet axis, which would cause the critical layer solution (4.46) -
(4.51) to completely cancel out the outer solution singularity there. But equation 
(4.32) shows that the large value of  causes the critical layer expansion /cdy dY
(4.28) to break down before this can occur and a new asymptotic solution will 
apply in the so called blending region indicated by the circle in figure 3. But 
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actually constructing this solution would be very difficult because the relevant 
flow structure (including that of the mean flow) is no longer quasi-parallel.  
       The weakly non-parallel flow structure appears to reemerge further 
downstream. But the outer parallel flow solution will remain invalid in the vicinity 
of the jet axis as long as the difference, say UΔ , between the centerline velocity 
and the critical layer velocity cr lay / cosU c θ∞≡  remains of order of the jet spread 

rate . We refer to this inner region as the modulated layer. The asymptotic 
structure and scaling of the relevant Green’s function solution will differ from the 
critical layer structure in this region, but we do not derive the result here. The 
detailed analysis is similar to, but much more tedious than, that of section 4. The 
primary difference is that the inner solution is now determined by a second order 
partial differential equation rather than by the ordinary differential equation

ε

(4.42). 
Fortunately, this equation can still be solved in closed form, but the solution is 
considerably more complex than the previous result. We can, however, simplify it 
by noticing that the streamwise length of this downstream region is typically 
much shorter than the streamwise length scale of the mean flow and that the 
RANS solutions show that the mean flow stagnation enthalpy  is 
very nearly constant. The end result is that 

2
0 / 2pH c T U= +

γ  turns out to be proportional to 
                                                
                                              ( ) (0

0
1 1,oe−χ ςγ ≡ ς Γ χ − ς)

)

                                  (5.34) 
 
where  denotes the incomplete Gamma function with argument ς  
given by 

( 1,oΓ χ − ς
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and scaled modulation parameter 
                              

                                             
( )( )1

0

0 2
c

c

ik U U

V
χ

− Δ +
≡

′
                                         (5.36) 

                       
 where                              

                                      ( )cr. lay. / .cU U UΔ ≡ − ε                                            (5.37) 

 
The appropriate lowest-order expressions for the relevant propagator 
components can be obtained by making the substitutions 
 

                                                                                                                                  (5.38) 0z → ς − χ0
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in equations (6.27) (below) and (C.18) to (C.22), where is defined by  0z (6.15)
(below).This solution  merges smoothly  into the parallel flow solution in the 
downstream potion of this region where 0χ becomes large. But it must also 
merge onto the blending layer solution at the upstream part of the region. We do 
not attempt to construct this solution here –which cannot, in any case be done 
analytically. But since the thickness of the upstream critical layer is infinite when 
it becomes perpendicular to the streamwise axis, we expect the blending-layer 
solution to also spread out into the axial direction and smoothly merge into the 
downstream region also shown in figure 3.  
   
6.  Source Modeling   
      
         The previous sections were primarily concerned with the purely acoustic 
effects, frequently—but somewhat misleadingly-- referred to as propagation 
effects. The remaining ingredient involves the (near field) fluid mechanical 
effects, which are inputted by modeling the turbulent sources that enter the 
acoustic formulas through the modified spectral 

tensor ( )* cos , 1 coi jk l cc
S M

c∞ ∞

⎛ ⎞ω ω
Φ θ ∇ ω −⎜ ⎟

⎝ ⎠Tyy; , sθ .  

      Ideally, we would like to model *ijklΦ directly, but the models must be based 
on experimental data and the experimentalists are unlikely to provide the 
requisite data in the near future. A possible alternative is to develop models for 
the ordinary spectral tensor  
 

               ( ) ( ) ( )1 1
1

1, , , ,
2

Tii MT
ijkl ijkl

V

kk e e R
∞

− ωτ
⊥

−∞

ξ +
Ψ ω ≡ τ

π ∫ ∫
k ξy; k y ξ ξi ,d dτ  (6.1) 

 
which is implicitly related to  by *ijklΦ (5.13). But even this quantity has almost 
never been measured (see, for example, Harper-Bourne (2003))--and then only 
at very low Mach numbers. Various components of the two point correlation 
tensor appear to be the most extensively measured turbulence quantities in high 
speed air jets. We are, therefore, forced to develop models for these quantities 
and calculate the spectra from(6.1).   
      There are two main requirements for such models. The first is that the large 
number of independent components (there are 45 of these in all) be brought 
down to a manageable level and the second is that realistic, but still relatively 
simple models, can be obtained for those components. The first of these (which 
is discussed in the next section) is usually accomplished by introducing add hoc 
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symmetry and/or statistical assumptions such as local isotropy and quasi-
normality. But, as indicated in the introduction, such assumptions are not viable 
at the high Mach numbers of technological interest. A more realistic approach is 
therefore introduced in the next section. Specific models for the remaining 
spectral components are introduced in section 6.2.    
  
  6.1 Kinematic Modeling  
    
       As indicated in the introduction, the usual quasi-normal and local isotropy 
assumptions are untenable at high Mach numbers, but developing a viable 
formulation for a general non-normal axisymmetric source model 
(Batchelor,1953; Goldstein, and Rosenbaum,1973 b, Kerschen,1983) is 
enormously complex and the result would probably be too complicated to be of 
practical utility. We therefore proceed by developing a non-normal but isotropic 
model and an axisymmetric but quasinormal model.  
 
6.1a General (non quasinormal) Isotropic Turbulence  
      
        Equation(5.13) shows that M

ijklR  will be an isotropic tensor if M
ijklR  is an 

isotropic tensor. Batchelor (1953) points out that the most general fourth order 
isotropic tensor is of the form 
 

   
                                                           

M
ijkl i j k l i j kl i k jl i l jk j k il j l ik

k l ij ij kl ik jl il jk

A B C D E F

G H I J

= ξ ξ ξ ξ + ξ ξ δ + ξ ξ δ + ξ ξ δ + ξ ξ δ + ξ ξ δ

+ ξ ξ δ + δ δ + δ δ + δ δ

R

      (6.2) 

where  are functions of A,B,...J , ty   and ξ  . But it follows from the definition of 
M
ijklR that  

                                     M M
ijkl jikl ijlk= =R R R M                                             (6.3)                           

and, therefore, that 
 

           
( )

( ) ( )                           

M
ijkl i j k l i j kl k l ij i k jl l jk

j k il l ik ij kl ik jl il jk

A B G C

E H I

= ξ ξ ξ ξ + ξ ξ δ + + ξ ξ δ + ξ ξ δ + ξ δ

+ ξ ξ δ + ξ δ + δ δ + δ δ + δ δ

R

           (6.4) 

 
which can be integrated over the unit sphere to show that  
 
              
                ( ) ( )1 2

M
ij kl ik jl il jk

V
ijkl t d′′ = δ δ + δ δ + δ δ∫ y ;ξ , ξR I I                        (6.5) 

 
where 
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and 
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Inserting this into equation (5.29) shows that  
                               
                       ( ) ( )1 20 ij kl ik jl il jkijkl

∗Φ ω = φ δ δ + φ δ δ + δ δy; ,0,                                 (6.8) 

where 
 
 
                                ( ) ( )1 1111 12120 2 0* *φ ≡ Φ ω − Φ ωy; ,0, y; ,0,  
 
                                  
                                                  ( )2 1212 0*φ ≡ Φ ωy; ,0,                                        (6.9) 
with 
 

 ( ) ( )1212 13130 0* *Φ ω = Φy; ,0, y; ,0,ω  (6.10) 

 
It is reasonable to assume that ( )1 Tijkl k , ,∗Φ ωy; k  has the same symmetry, i.e. 

that 
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k , ,∗Φ ω = φ δ δ + φ δ δ + δ δy; k jk                      (6.11) 

 
where 
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and 
 
                              

 ( ) ( )1212 1 1313 1T T* k , * k ,Φ ω = Φy; k , y; k ,ω  (6.13) 
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Inserting these results into equation(5.31) and using Appendix D (which contains 
the relevant details of the analysis) as well as (C.18) to (C.22) yields 
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 where the primes denote differentiation with respect to 
 

                                                                  0 0 ,z y⊥≡ α                                                               (6.15) 
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0α  denotes the parameter  (defined by 2α (4.43)) with cos /k c∞ω θ cC,  is given by     =
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(with C defined by (C.4) and the replacements (5.38) and (5.39) for and , respectively 
inserted after the critical layer disappears) and 

0z
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are two independent components of the Doppler shifted turbulence spectrum that 
can, in principle, have entirely different functional forms. 
 
6.1b Quasinormal Axisymmetric Model 
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We now put 
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and assume that the turbulence is quasi-normal(see Batchelor,1953; 
Goldstein,2004), which means that  
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since (Goldstein & Leib,2005)    

   

  

( ) ( )

( ) ( ) (

0
1 , ,

2

                              , , ; ,0 ; ,0

T

i j k l 0 o
T

ijkl ij kl

v v τ v v τ τ dτ
T

R R R

−

′ ′ ′ ′ρ ρ + +

= τ +

∫ y y η

y η )y 0 y + η 0

                       (6.20) 

 
We now require the turbulence to be axisymmetric (Batchelor, 1953) in the sense 
that 
               
                   ( ) ( )1 1 1 1; ,M

ij i j ij i j i j j iR A B C Dτ = ξ ξ + δ + δ δ + δ ξ + δ ξy ξ              (6.21)            
 
 
where ,  ,  ,  and A B C D  denote functions of y , , τ 2 2

2 3⊥ξ ≡ ξ + ξ  and 1ξ ; 
,   and A B C  are even functions of the latter quantity while  is an odd function. 

This model is chosen because it is the most general of those whose 
mathematical properties have been studied in the literature and because it 
reflects the fact that the cross flow velocity components tend to be much more 
similar to one another than to the stream-wise component (even for non–
axisymmetric flows).  

D

     It follows from equations(5.13), (6.19) and (6.21) that  
 

( )1 12
2 2

M
ll lij ij iiijk ikjl nknlk kG G ; ,τ d G G I G G I∗ ∗ γ −⎛ ⎞− ⎜ ⎟

⎝ ⎠∫
V

y ξ ξ =R R
lk
∗e  

 
2

21
2 ii nknk                                                                                  G Iγ −⎛ ⎞+ ⎜ ⎟

⎝ ⎠
        (6.22) 
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where 
 

                                       M M
ijkl ij kl

V

I R R d≡ ∫ ξ                                                    (6.23) 

 
while appendix E (which contains the relevant details for this model) and 
equations(C.18) to (C.22) imply that 
 

( )( ) ( )
22 2

1111 1122 2222 0 0* 2 * 1 1 * 1c c c

l

c

ij ikjlkG G I

C C C C w

∗

∗⎡ ⎤ ′ z⎡ ⎤= Φ + Φ − + − Φ +⎣ ⎦⎦⎣ Re G

 

    

  ( )( ) ( ) 22 3
22 33 23 2323 2222 0 02 G G G I I z w z∗ ′′+ − −Re +                                                (6.24) 

 

( ) ( )
( )
( ) ( ) ( )

2
22 20 30

0 0 1122 12122

12 cos
cos 1 1 cos 2 1 cosT T

ccc M z w z I I
c M M M

∞

∞

⎡ ⎤ γ −θ ⎢ ⎥ ′′∇ − ∇
θ − − θ − θ⎢ ⎥ω

⎣ ⎦

GG
+  

 
where is defined by equationcC (6.16). As in the preceding sub-section, we now 
assume that this result along with the symmetry conditions  

  

                                     (6.25) 2222 3333 1122 1133 1212 1313* * ,   * * ,  * *Φ = Φ Φ = Φ Φ = Φ

 

also holds when ( ); ,M
l

V
ijk τ d∫ ξ ξyR  is replaced by  

( ) ( )1exp .cos ; ,T
M
ijkl

V
Si τ d

c∞
ω ξ θ + ⋅∇∫ Tyξ ξ ξyR  

      Then, inserting (6.24),along with equations(6.19),(C.18),(E.3) and (E.4) into 
(6.22),  and using the result in equations (5.31), (5.29) and (5.13), shows that the 
far-field acoustic spectrum ( )Iω x y can now be expressed in terms of five distinct 
components of the spectral tensor 
 

                   (* * cos , , 1 cos
Tijkl ijkl cS M

c c∞ ∞

⎛ ⎞ω ω
Φ ≡ Φ θ ∇ ω − θ⎜ ⎟

⎝ ⎠
yy;  )                      (6.26) 
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by 
 

( )

( )( ) ( )
2 22 2

1111 1122 2222 0 0

     

2 2 sin * 2 * 1 * 1 1c c cc

I

C C C C w
x c

ω

∞

∗

→

⎧
π πω ⎪⎛ ⎞ ⎡ ⎤ ′⎡ ⎤θ Φ + Φ − +Φ − +⎨⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠ ⎪⎩

x y

Re G z

 
        

( ) ( )
( )
( ) ( )

2
22

0 30
0 0 1212

1cos4 *
cos 1 1 cos 2 1 cosT T

ccc M z w z
c M M M

∞

∞

⎡ ⎤⎛ ⎞ γ −θ⎢ ⎥⎜ ⎟ ′′+ ∇ − ∇
⎢ ⎥⎜ ⎟θ − ω − θ ω − θ
⎢ ⎥⎝ ⎠⎣ ⎦

GG
Φ                                

                                                                                
 
 

   ( ) ( ) ( )
22 3

23 22 33 0 0 2222 2233       2 * *

       

G z w z∗
⎫
⎪′′+ − Γ Γ Φ −Φ ⎬
⎪⎭

Re
                                 (6.27) 

 
with the replacements (5.38) and (5.39)  being  made  just downstream of the critical 
layer. And since 

  
                          (6.28) 1111 2222 1212 1122 2233 1122* * 2 * *    and   * *Φ = Φ = Φ +Φ Φ = Φ

 
for isotropic turbulence, this result reduces to equation(6.14) in that case, even 
though the latter applies when the turbulence is not quasi-normal. This shows 
that the quasi-normal hypothesis does not effect the isotropic limit of equation 
(6.27).  An alternate representation of the source terms was given by Musifar 
(1993, 2006)          
 
       Equation (6.27) can be rewritten by adding ( ) 12124 1 *c cC C∗⎡ ⎤− Φ⎣ ⎦Re  to the first 

term in square brackets and subtracting the corresponding result from the 
second.  The modified first term will then be proportional to 

( ) ( )2
1111 1212 1122* 2 1 2 * *c c cC C C∗⎡ ⎤Φ + − Φ +Φ⎣ ⎦Re  2

22221 *cC+ − Φ  , which reduces 

to  when the turbulence is isotropic, and in the more general non-isotropic 
case (see Equation

1111*Φ
(6.16)), becomes identical to the self noise term found by 

Goldstein & Rosenbaum (1973 b) in the Lighthill equation context when the 
acoustic Mach number M is set equal to zero (see Ribner (1969)). The remaining 
(modified) terms can be shown to vanish in the absence of mean shear (i.e., 
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when =  and is determined from the free space Green’s function). 

The vanishing of the last term is a direct consequence of replacing by the free 
space Green’s function while the second term vanishes because the subtracted 

0,M ≡ 2c 2c∞ 0G

0G

( ) 2
01c cC C∗⎡ ⎤−⎣ ⎦Re G  term cancels with ( ) 2

0 /T∇ ωG  in this case.  It would, 

therefore, not be unreasonable to follow Khavaran & Bridges (2004) and refer to 
the remaining (modified) terms as the shear noise terms. Notice that they are 
both proportional to  when the turbulence is isotropic (but not necessarily 
quasi-normal, see

1212*Φ
(6.27)). This latter spectral component becomes proportional to 

when the turbulence is also assumed to be quasi-normal, but  and 
 can be independently specified in the more general case being 

considered here (which implies that the shear and self noise spectra can be 
independently specified). A similar decomposition was made by Musifar (1992). 

1111*Φ 1212*Φ

1111*Φ

      The 1st term in equation (6.27) can also be rewritten by collecting coefficients 
of  2

cC ,  and 1. It can be shown that it is the same as the result that would 

be obtained if the modified tensor  
cCRe

M
ijklR  were assumed to be quasi-normal with 

the corresponding 2nd order tensors being axisymmetric. 
      Equation (6.27) contains five modified spectral tensor components.  
Equations(5.13),  (5.29) and (6.23) imply that they can be expressed in terms of 
five distinct components of the spectrum (6.1) of the Reynolds Stress 
autocovariance tensor, which, with the present methodology, can be specified 
independently of one another. It follows from (6.16)and the far field behavior the 
Fourier transformed Green’s function, that the coefficient of 2222*Φ  and the 
second term in the absolute value squared multiplying 1212*Φ  are the only two 
terms in (6.27) that do not have acosθ  or a 2cos θ  factor. The entire 90o sound 
field is therefore produced by these terms. But our numerical computations 
indicate that the contribution from the latter term is, as expected, negligibly small.  
 
       As written equation (6.27) is the sum of three distinct terms: 1) the term 
containing the square bracket (which we refer to as term I ), 2) the term 
involving (which we refer to as term 1212

∗Φ II ), and 3) the remaining term(referred 
to as term III ). The first of these only involves the 1111, the 2222. and the 1122 
components of the Reynolds stress autocovariance tensor. The second only 
involves the 1212 component and the last the 2222 and the 2233 components. 
Terms I and III  , therefore only depend on the covariances of the squares of 
velocity components, whereas term II only involves the autocovariance of the 
cross velocity components. Notice that the first member of the latter term has 6 
powers of the Doppler factor 1 cosM− θ  in its denominator when the implied 
differentiation is carried out—which will cause it to produce a very large 
contribution to the small angle sound field at supersonic Mach numbers. (The 
other terms in the equation only have at most 4 powers of the Doppler factor in 
their denominators.) 
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6.2 Spectral Modeling  
 
Experiments (Bridges & Podboy, 1999; Harper-Bourne, 2003) suggest that M

ijklR  

cannot be expressed as a simple product of its space and time components ( as 
was often assumed in the past, e.g., Goldstein and Rosenbaum,1973 b) but that 
a good local model, which is consistent with axi-symmetry but does not account 
for the potentially significant long range coherence effects that are most effected 
by the streamwise retarded time variations, might be  

                                                  

                                                  0,0a   M
ijkl

XR e γ− +=                                     (6.29) 

where    
  

              ( ) 2 2 2 2 2 2 2 2
1 1 1 1 1

ˆ ˆ   , ,            with   ,   TX ≡ + + = + ≡ +ξ ξ τ ξ β τ ξ β ξ ξ τ   

(6.30) 
 

( )2 2  T=β β ξ and (2 2  T )γ γ ξ=  are arbitrary functions of Tξ which vanish at 

,  is a parameter , the tildes denote the normalized variables 

, with

0Tξ = , a 0 0

1 1 1/ , / ,T T Tl lξ ≡ ξ ξ ≡ ξ τ ≡ τλ 2
2 3  T ≡ + 2ξ ξ ξ  and the intermediate length and 

time scales  can be related to the integral scales measured by 
(Bridges & Podboy,1999). 

1 , , and 1/l l⊥ λ

          Notice that ( )1, ,0M
ijklR y, 0ξ and ( )0, ,M

ijklR y, 0 τ exhibit the usual cusps at 

 and respectively, that are observed in virtually all high Reynolds 
number experiments (Pope, 2000, pp. 67, 70, 71,110, figures 3.20, 3.22 (a), 
5.13). Of course, these correlations must, in reality, be smooth functions of their 
arguments even at these points, but the corresponding radii of curvature turn out 
to be of the order of the Taylor microscale (Pope, 2000, pp.198-200) which would 
certainly be negligibly small at the high Reynolds numbers that are of interest 
here. 

1 0ξ = 0,τ =

              Since (5.13), (5.29) and the symmetry conditions (6.25) imply that 

( )12222 , ,T
MR y, ξξ τ can be replaced by ( ) ( )1 12222 3333

1
2 T T

M MR , , R , ,⎡ ⎤ξ τ + ξ τ⎣ ⎦y, ξ y, ξ  in 

( )( )2222 1* , 1 cosT ck MΦ ω −y; k , θ ,   that ( )11122 , ,T
MR y, ξξ τ  can be  replaced by 

( ) ( )1 11122 1133
1
2 T T

M MR , , R , ,⎡ ⎤ξ τ + ξ τ⎣ ⎦y, ξ y, ξ  in ( )( )1122 1* , 1 cosT ck MΦ ω − θy; k , , etc, 

and since these latter quantities depend on  only throughTξ
2
2 3T = + 2ξ ξ ξ , a 

reasonable global model that has the same local characteristics as (6.29) but is 
less compact (and, therefore, able to reproduce the negative loops in the 
correlation tensor  (Bridges & Podboy  (1999)) would, then be 
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m l

M
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XlR a D D eτ
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− += =∑∑  

 

                 
2 2 2 2

0,1 1,0 1 1,1 1
0,0 2

11 ...  ,a a a
a

X XX
Xeτ ξ τ ξ γ−

⎫⎧ +⎪ ⎪⎛ ⎞− + + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

+                   (6.31) 

 
where the are parameters, the operators ,m la ,  ,1nD =κ κ τ which are defined by 
 

     1 1
1

0,       ,  1, ,  times,nD D D D D D n∂ ∂
≡ ≡ ≡ ≡

∂∂
…κ κ κ κξ τ

τξ τ  (6.32) 

satisfy the commutation relations D D D D=κ κλ λ . 

Then since (5.12)implies that   
 
           

( ) ( ) ( )0,0
1; ,0 , ,

2

T

i j i j 0 k l k l 0 0
T

ijkla R v v v v τ v v v v τ dτ
T −

⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= ≡ ρ − ρ ρ − ρ⎣ ⎦ ⎣ ⎦∫y 0 y y (6.33) 

must be different for the different components of M
ijklR  it is reasonable to expect 

that the remaining will be different as well. ,m la
      The corresponding spectral tensor is 
 

      ( )
2

1
1 ,

, 0

1 1, ,
i XmT

ijkl T m l T
m l

T Tk ll l
k e a D D e d

∞ ∞ ⎛ ⎞ ∞+⎜ ⎟ − +⎝ ⎠

=−∞ −∞

−
Ψ = ∑∫ ∫ ∫

ξ k
k ξ

i γξ
τ

ωτ
1 1d dω τ ξ

λ
       (6.34) 

 
which, as shown in appendix F (which contains the details of the derivation), can 
be written as 
 

     ( ) ( ) (
2

1
1 ,

, 0 1

2 1, , 1 ,m lT
ijkl T m l T

m l

m l
k

l l dk a D D
R dR

∞
+

=

Ψ = − −∑k ω
π

ω
λ )0G k R                     (6.35)                            

 
 
where the operators 

1
,  kD Dω  are defined by  

      

    1 1
,1 1 , .

1
1 const.const

 ,     
T T

k
k k k

D k k D
k k ==

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞≡ = ≡ =⎜ ⎟ ⎜ ⎟∂ ∂∂ ⎝ ⎠⎝ ⎠
ω

ω
ω ω

ω ω∂
           (6.36) 
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we have put 1 1 1 ,   / ,k k l ω ω λ≡ ≡    T T l≡k k T

 
                                                2 2

1 ,R k≡ + ω                           (6.37) 
and 
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∫
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         (6.38) 

 
                                                                                       
 is just the Hankel transform of ( ) 1/221 exp 1R 2Rβ γ

− ⎡ ⎤+ − + +⎣ ⎦
. This shows that the 

acoustic spectrum (5.31) depends on S∇
Ty  only through the square root of 

( ) ( )S S∇ ∇
T Ty yi ( ) 2 2 2 21 cos / cos ,TM c c∞= − θ − θ⎡ ⎤⎣ ⎦y  which can be negative for 

sufficiently small cos .        θ
  
     When β  and  are set equal to γ
 

                     ( ) ( ) ( ) ( ) ( )2 22-s 2-s
 0,   0

2
T T

s s
β ξ α ξ γ α ξ= + ≥ = T ≥

ξ →

                     (6.39)    

  
where  andα  are real parameters, the span-wise component of 0 2s< < (6.29) 
behaves like  
 

   (6.40) ( ) 0,0 0,0

2 /2 1 /2
/20, ,0

0, ,0  a   a     as  0 T T
M
ijkl

s s
TT TX

R e e
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
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− −+ ξ α− ξ γ ξ
= →ξ

 
and equation (6.38) becomes 
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where 

                 ( ) ( ) ( )3 / 22
0

22

0

, , 1 Z
s

H A B Z B B d
s sAJ e

⎛ ⎞
⎜ ⎟
⎝ ⎠
−

− +≡ +

∞
+∫ ηη η ηη η

 (6.42) 

                                                        ( )1/ 221Z R≡ +α ,                                      (6.43) 
 

 
2

2
2 ,

1
Tk

B
R

≡
+

 (6.44) 

Gradshteyn & Ryzhik (p.712, # 6.623, 2 (1965)) show that 
( ) ( )( )2 2/ 1 , , 1sH Z R B Z− + = , when 0Z = in which case (6.35) simplifies to 

 

               
( ) ( )

( )
2

1
1 , 5/22 2, 0 1

6 1, , 1
1

                          

m lT
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m l
T

m l
k

l l
k a D D

R k
ω

π
ω

λ

∞
+

=

Ψ = −
+ +

∑k
           (6.45)     

Unfortunately, equation (6.42) can be very difficult to evaluate in the general case 
where , but since  will always be very small, of the order of 0.3, 0Z ≠ α

( ) ( ) ( ) ( ) 22 22 /
/ 1 / 1s s 2 s

Z R R− −+ = α +  will certainly be small as well and 
( ) ( )( )2 2/ 1 , ,sH Z R B Z− +  can be approximated  by  

                               (6.46) ( ) ( )( ) ( )2 2/ 1 , , 0, ,sH Z R B Z H B Z− + ≈

Changing the integration variable to ( )2 / 1s
Z

−
η  in (6.42) shows that  

becomes independent of 
( )0, ,H B Z

B  when Z  becomes large. Then since is 
independent of its second argument for both small and large values of

( )0, ,H B Z
Z , and 

since , which is proportional to the turbulence Mach number, is usually fairly 

small compared to
Tk

R , it seems reasonable to approximate ( ) ( )( )2 2/ 1 , ,sH Z R B Z− +  

by 
        

.              
( ) ( )( ) ( )2 2

22

0

/ 1 , , 0,0, ,
s

ZsH Z R B Z H Z d
se

⎛ ⎞
⎜ ⎟
⎝ ⎠−
−

− ++ ≈ =

∞

∫ η η ηη
                (6.47)                            

  
which depends on the single argument Z and is much easier to evaluate. 
Equation (6.35) then becomes 
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 And since                                                                    

 ( ) ( )2 2/s-1
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Z
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it follows that  
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                                                                                                 a      (6.50) s    Z →∞
 
When , equation 1s = (6.47) can be put into the form 
 

                                         ( ) ( )2

2

/ 2

0

Z0,0, =1
2 1

Z
H Z de−

∞
⎛ ⎞− ⎜ ⎟
⎝ ⎠ +∫ η η

η
η  (6.51) 

which can be expressed in terms of the Struve and Bessel functions 
( ) ( )1

ˆ   and 1
ˆZ N ZH , respectively, since (Gradshteyn & Ryzhik (1965), p.316, 

#3.366, 3)  
                         

                        ( ) ( )1 12

ˆ

0

ˆ ˆ 1
21

Ze Zd−
∞

N Z⎡ ⎤= − −⎣ ⎦+∫ Hη η π

η
η                                (6.52) 

 
and it follows from (Abramowitz & Stegun, 1965, pp.361, 
496,497,#s9.1.30,12.1.13, 12.1.29) that all of the higher order terms in (6.48) can 
be expressed as higher order Struve and Bessel 
functions ( ) ( )ˆ ˆ  and n nZ N ZH ,  2,3,n = …plus simple polynomials, which means 

that it is essentially given in closed form for this case. But the result can be 
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rapidly computed even in the more general case where is not equal to 1, by 
simply tabulating  against its single argument 

s
(0,0,H Z ) Z. 

 
     All of our computations were carried out with set equal to 1, in which case s
(6.40) implies that the transverse correlation tensor ( )0, ,0T

M
ijklR ξy, behaves like 

( 3 / 21/ 31exp. /
2 Tξ α )  and, therefore, has zero slope but large curvature at this point.  

Figure 4 shows the predicted density-weighted fourth order correlation 
( )1111 0, ,0T

MR ξy,  based on the functional form (6.39)  with the ,s α  values of 1,0.1 
that were used in the actual acoustic computations. It also shows the 
corresponding quantity inferred from the Bridges and Podboy (1999) 
measurements of the second-order correlations by using a locally homogeneous, 
quasi-normal approximation. The measuring point was on the nozzle lip line 7.5 
diameters downstream of the exit in a 0.9JM =  jet.  
 
7. Application to a Round Jet 
 
      Current aircraft are usually configured with circular engine exhaust streams. 
We, therefore, make the present results more concrete by considering the case 
of an axisymmetric mean flow, where 2,    cos / ,Tr y r⊥ ⊥≡ ϕ =y  

( ) ( )2 2   ,    M M r c c r⊥= = ⊥ .The coefficients in equations (4.21) are expressed in 
polar coordinates in Appendix G and the linear operator in (4.21) now becomes 
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2 2 2
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which implies that  will be of the form ˆ

oG
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where 
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and  

                     
( ) ( )

2 2 2
2

2 2
1 1nk

r cd d c kr dr dr rkU kU
⊥

⊥ ⊥ ⊥ ⊥
2

n
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

≡ + −
−ω −ω

L +                      (7.4)  

It follows that 
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nw r r⊥⊥→ →                                                   (7.8)             

and 
                                    ( ) ( )2 232n ncr W kU⊥Δ ≡ − π −ω  ,                                    (7.9)  
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d dW w w w w ndr dr⊥ ⊥
≡ − )                       (7.10)  

of ( ) ( )1  and nw w 2
n , is independent of r⊥. It follows from (4.17) and (4.21) that 
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    Since the spectral functions are expected to be independent of in 
equation

′ϕ
(6.27), it is appropriate to average it over this angle. Appendix G and 

equations (C.18) to (C.22) can be used to show that the result is given by  
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where  
 
     ( ) ( )2 2 2

0 1111 1122 22221 * 2 1 * 1n n c c ccI F w z C C C C∗⎡ ⎤⎡ ⎤′⎡ ⎤≡ + Φ + − Φ + − Φ⎣ ⎦ ⎣ ⎦⎣ ⎦Re *

)

 

 

                                                          (7.13) (1212 2222 2233

                             
        4 * 2 * *n nB E+ Φ + Φ −Φ

 
with  given by cC (6.16), 
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and  
 

                                                ( )1 cosD M≡ ω − θ                                     (7.18) 
 
where the Doppler weighted cosine function  is defined by cC (6.16) with  given 
by  

C
(C.4) and the replacements (5.38) and (5.39) inserted after the critical layer 

disappears. 
 
8. Prediction of the Sound Field and Comparison with 
Measurements 
   
        In order to use the point-wise acoustic spectra  (7.12)-(7.17) to predict the 
radiated sound field it is necessary to relate the modified spectra 

(cos , , 1 cosijkl cS M
c c∞ ∞

⎛ ⎞ω ω
Φ θ ∇ ω −⎜

⎝ ⎠
yy;  )θ ⎟ to the ordinary moving frame spectra 

(cos , , 1 cosijkl cS M
c c∞ ∞

⎛ ⎞ω ω
Ψ θ ∇ ω −⎜

⎝ ⎠
yy;  )θ ⎟  by inserting (5.13) into the basic 

definitions (5.29) and (6.1). Appropriate special cases of the source model(6.47) 
and (6.48) can  then be inserted into the result. 
      The simplest formulas that are consistent with the Bridges & Podboy (1999) 
measurements correspond to setting the integer  equal to 1 in s (6.47) and 
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retaining only  the lowest-order source non-compactness term, i.e., the term. . 
Then since  

1,0a

  

                                                    
2 2

1
1

1

k
k

k Z
α

Z
∂ ∂

=
∂ ∂

                                    (8.1) 

equation (6.48) reduces to  
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k
π αω

λ

α α α
Z

(8.2) 

where (0,0, )H Z is given by (6.51). 
 Historically, the convection Mach number cM has typically been set equal to 

(where 0.68 /JU c∞ JU denotes the mean jet exit velocity)—which would certainly 
be reasonable upstream of the end of the potential core, but would not make 
sense downstream of this point. We therefore generalize this result by setting   

  

                                                        /0.68 /c c lM U c∞=  (8.3) 

where  denotes the centerline velocity.  /c lU
      Equation (7.12) can now be summed over the noise producing region of the 
jet to predict the radiated sound. But, as with any acoustic analogy approach, this 
requires information about the mean flow and turbulence statistics, which 
ultimately has to be obtained from measurements of the flow, which limit the 
applicability of the result to a limited range of operating conditions. But it is 
necessary to extrapolate the experimental results beyond the available data base 
in order to extend this approach to a broad range of operating conditions.  We do 
this using the experimental results to relate the source model parameters to the 

 length, time and velocity scales,k − ε
3/ 2k

ε , k
ε  and ,respectively. We then 

use the NASA Glenn version of the NPARC Wind code (Nelson and Power, 
2001) to determine the mean flow along with the spatial distribution of the length, 
time and velocity scales within the jet along with the dimensionless time scale 
parameter , where the prime is meant to denote differentiation with respect 
to in the present context. More specifically, we assume that the length, time 
and velocity scales  and that appear in equation 

1/ 2k

/kU ′ ε
r⊥

1
1 ,, Tl l −λ 0,0a (6.48) (directly and 
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implicitly through equations(6.37) and(6.43)) are proportional to the  length, 
time and kinetic energy scales

k − ε
3/ 2k

ε  , k
ε  and ( )2kρ  respectively , i.e. we put   

 
( ) ( )0,0

3/2 3/2 21
1 1 ,    ,    ,  , , 0T T i jkl ijklak k kl C l C C R C k−

τ≈ ≈ λ ≈ = ≈ε ε ε y 0 ρ       (8.4)             
where the dimensionless parameters 1, ,TC C Cτ  and  can, in general, depend 

on the dimensionless time scale parameter 
ijklC

/k U ′ ε . The first three of these are 
determined with reference to the integral length and time scales measured by 
(Bridges & Pobody,1999), and the last is inferred from their mean square 
fluctuating velocity measurements. As noted in section 6, 1212Ψ  depends on the 
autocovariance of the cross velocity components, while the remaining spectral 
components in the acoustic formulas depend only on the covariances of the 
squares of velocity components. We, therefore, expect the parameters in the 
former to scale somewhat differently than those in the latter. 
 
      Since RANS-type models are based on the assumption that the turbulence is 
close to equilibrium, we expect the dimensionless parameters  and  
to be relatively constant in the initial mixing layers and fully developed region 
further downsteam where the flow evolves fairly slowly in the streamwise 
direction (Pope,2000, p.362 & p. 365) —but not necessarily in the transition 
region, where the flow can be fairly far from equilibrium (see figure 2). We 
account for variations in the latter region by allowing these parameters to depend 
on

1, ,TC C Cτ ijklC

/k U ′ ε . A comparison of the experimentally measured length, time and kinetic 
energy scales with the corresponding RANS-derived quantities showed that the 
data could  be reasonably well represented by using constant values of 

 everywhere in the flow, but that 1, ,T ijklC C C  Cτ  would have to depend on /k U ′ ε  
in the transition region. Figure 5 shows results obtained by plotting the ratio of 
the experimentally measured integral time scale obtained from auto-correlations 
of the streamwise velocity fluctuations to the /k ε  RANS based scale vs. /k U ′ ε  
for a jet. These scales are directly proportional to one another in the 
fully developed region and  in the  initial shear layer, which maps into a single 
point in this plot because 

0.9JM =

/k U ′ ε  turns out to be nearly constant there. The time 
scale  can, therefore, be made to transition from its initial shear layer behavior 
to its behavior in the fully developed region by putting

1−λ
(0) ( /C C F k Uτ τ ′ )= ε . We 

use  in  1 for all the other spectral components. (0) 0.7Cτ = 1212Ψ (0) 0.3Cτ =
    As noted in section 6.2, the individual  values are equal to the density-
weighted averages of the appropriate velocity components, and it turns out that 
the ones that actually appear in the final formulas only involve squares of these 
components. Lacking any information about the 4

0,0a

th order correlations we assume 
quasi-normality and infer from equation (6.17) that the dimensionless  can be 
express expressed entirely in terms of these quantities, or more  specifically that 

ijklC
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( ) ( )2 2
2 2

1111 1 2222 3333 2233 2 1122 1133 1212 1 22 ; 2 ; 2C v C C C v C C C v′ ′= = = = = = = 2 2v′ ′ , where 

{ }1 2 3, ,v v v′ ′ ′ ′=v . The last relation follows from equation(6.19) which implies that 

( ) ( ) (2

12 11 22, ,0 , ,0 , ,0M M MR R R⎡ ⎤ = ×⎣ ⎦ )y 0 y 0 y 0 since ( )1212 , ,0MR y 0 and must 
be equal by definition. The mean square velocity components are now assumed 
to be proportional to the turbulence kinetic energy distribution with the best 
overall fit to the data corresponding to  the relative proportionality  

(1122 , ,0MR y 0 )

2
1 0.8v k′ =  and  

2 2
2 3 0.6v v′ ′= = k . The anisotropy in the turbulent kinetic energy has a strong effect 

on the 90o degree spectral shape because there are strong cancellations among 
the various components of the spectra ijkl

∗Ψ  of the generalized Reynolds stress 

autocovariance tensor that contribute to the spectra ijkl
∗Φ  appearing in (6.27). 

 
   The (Bridges/Pobody ,1999) data suggest that 1 0.96, 0.144,TC C= =  for 

and  for all other spectral components would be 
reasonable values of the remaining parameters in (8.4). It also seems consistent 
to put ,  for 

1212Ψ 1 0.58, 0.186TC C= =

0.2α = 1,0 0,00.972a a= 1212Ψ and 0.34α = , 1,0 0.54a =  for all other 
components of (8.2). The remaining unknowns in (7.12), including quantities 
related to the critical layer, depend on the mean flow and can, therefore be 
determined directly from the RANS calculation.  
      The WIND code was used to obtain RANS solutions for cold jets with 
acoustic Mach numbers /J JM U c∞≡  of 0.50, 0.90, and 1.4--which span the 
range of current interest--and upstream nozzle conditions specified in terms of 
appropriate plenum temperature and pressure ratios. Equations (7.12) to (7.17) 
were then used along with the parameter choices described above to calculate 
their far-field acoustic spectra on the arc / Jx D = 100.  
       Figure 6 is a comparison of the results with narrow band data obtained from 
the NASA Glenn SHJAR rig (Khavaran et. al., 2002) for the same upstream 
conditions. No vertical adjustments were made to obtain the best fit. Atmospheric 
attenuation was removed from the measurements in order to make lossless 
comparisons with the predictions. The overall agreement appears to be quite 
good but there is a tendency to under predict the higher frequency components 
of the 90o spectrum in the supersonic case. This is because the flow is not 
correctly expanded in this case and the present analysis does not account for the 
resulting shock associated noise (shown cross hatched in Figure 6c). Another 
significant discrepancy is in the prediction of the spectrum for jet 
(figure 6e). This may, in part, be due to the breakdown of the weakly non-parallel 
flow approximation in the region near the end of the potential core – which is an 
important source region for this transonic Mach number. Notice that the spectra 
tend to be narrower and more highly peaked at than at , especially 
at the higher Mach numbers. Figure  7 is a comparison of the present result with 
the best previous results obtained from the Glenn JeNo code, which is based on 

30θ = 0.9JM =

030θ = 090θ =
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a parallel model (with an ad hock assumption used to eliminate the critical layer 
singularity) and does not account for the strong retarded time variations 
produced by the long range correlations. 
 
 9. Discussion   
 
     The acoustic predictions of the last section were based on the special case 
(7.12) of the more general result(6.27) which, as pointed out at the end of section 
6.1, is composed of three distinct terms. The first of these (referred to as term I ) 
is the product involving the first term in square brackets. It is not hard to see that 
it exhibits the usual quadrupole- like behavior at low frequencies, i.e. it behaves 
like  4ω  as 0ω → . The second term (referred to as term II ) is the product 
involving . It exhibits dipole- like behavior at low frequencies, i.e. it behaves 
like  

1212
∗Φ

2ω  as 0ω → . It should not, however, be interpreted as an actual dipole 
source, since it is now known (Goldstein (1975), Balsa (1977), Musafir (1992) 
and Afsar et al (2007)) that the mean flow can raise the efficiency of certain 
components of the quadrupole source from 4ω to 2ω as 0.→ω  Afsar et al (2007) 
even show that, these components exhibit the same inverse six Doppler factor 
singularity as term II , which as noted above , corresponds to the strongest 
critical layer singularity in the present result . So, while  the Goldstein (1975) and 
Afsar et al (2007) result  shows that term II is the dominant small angle noise 
source at low frequencies, the present result shows that this term is the dominant 
small angle supersonic noise source at all frequencies. The remaining term does 
not appear to make a significant contribution to the sound field for any of the 
conditions considered and will, therefore, not be discussed any further.  
    Term II only contributes to the 90o sound field at extremely low frequencies, but 
becomes increasingly important at small angles as the acoustic Mach number 
increases. Each of the three terms acts like a statistically independent sound 
source. Their individual contributions to the overall 30o spectrum are shown in 
figure 8. Term III is too small to show up on the figure.  Notice that Term II is 
only dominant at relatively low frequencies when JM is equal to 0.5, but becomes 
dominant at all frequencies when the Mach number is supersonic. This occurs 
because the six powers of the Doppler factor that appears in the first member of 
this term causes it to be very large.  
         Figure 9 shows the contribution of various axial slices of the jet to the 
overall spectra for the supersonic case.  Notice that these point-wise spectra 
tend to be much narrower at  than at --especially in the upstream 
region. This is, in part, due to the fact that much of the small angle sound is 
generated in the critical layer while none of the 90

030θ = 090θ =

o sound is generated there. 
    For acoustic Mach number is close to unity, much of the small angle radiation 
is generated near the end of the potential core --which may explain the tendency 
to under predict the peak frequency of the 30o spectrum in the JM =0.9 case, 
since the weakly non-parallel flow assumption tends to breakdown in this region. 
But this may also be caused by the break down in the quasi-equilibrium 
assumption (on which the RANS modeling is based) in this region. These 
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difficulties can probably be overcome by using a hybrid RANS/LES approach of 
the type described by Goldstein (2006), but that would greatly increase the 
expense of the computation.  
    
       The spectra of each of the three components of (6.27) is determined 
from(8.2), but with different coefficients for each component. The 2nd term in the 
curly brackets of this latter equation is associated with source non-compactness 
effects and does not contribute to the 90o sound field. It is also relatively 
insignificant at all angles when M becomes small but becomes the dominant 
source of the small angle sound at 1.4JM = . This term introduces an 2ω  factor 
which causes term II to behave more like term I at high Mach numbers.  
        Computations were only carried out for subsonic convection Mach numbers 
which correspond to the relatively low (<1.5) acoustic Mach numbers where non-
linear propagation effects and Mach wave radiation are believed to be 
unimportant. The instability wave contribution to the Green’s function is then 
negligibly small and  the convective amplification of the sound sources turns out 
to be relatively insignificant compared to the very strong critical layer effects 
produced by the mean flow Doppler factor.  Fortunately, this also corresponds to 
the Mach number range of most technological interest.  
 
    The critical layer only appears when the mean flow acoustic Mach number is 
supersonic and the observation angle (as measured from the downstream axis) 
is fairly small (<45o). It gradually moves inboard from the nozzle lip line with 
increasing downstream distance until it reaches a point beyond the end of the 
potential core where it quickly moves onto the jet axis and suddenly disappears. 
But the propagator is still very close to being singular, and can consequently be 
relatively large, for a significant distance downstream of this point. It was, 
therefore, necessary to construct a new inner solution for this region as well—
especially since much of the small angle sound field is actually generated in this 
relatively localized portion of the jet when the acoustic Mach number is close to 
unity. This tends to decrease the width of the corresponding acoustic spectrum 
because the band width of the turbulent source tends to be relatively small in 
each streamwise slice of the jet as compared to the relatively large frequency 
variation that occurs over the entire jet.  
       The source distribution for the larger angle acoustic radiation tends to be 
more evenly distributed over the jet (since no singular layer occurs at these 
angles). This contributes to making the large angle acoustic spectrum more 
broadband than the small angle spectrum when the jet acoustic Mach number is 
close to one, but the relative spectral width of the individual slice contributions is 
probably the more important factor here.  
       The upstream critical layers move into the high turbulence region along the 
nozzle lip with increasing jet Mach number. This causes more of small angle 
radiation will be generated in these layers, which generate narrower spectra than 
the reminder  of the jet when the correct inner solutions are used in these 
regions. This partially explains why the width of the small angle spectra 
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decreases with jet Mach number.  It is, of course, well known that Doppler 
frequency shift and mean-flow refraction effects also play an important role here. 
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Appendix A Mean Flow  

As in Goldstein & Leib (2005), we suppose that all lengths have been normalized 
by some characteristic cross flow dimension of the jet (say its diameter, in the 
case of a round jet) and all velocities by some appropriate characteristic 
streamwise velocity with similar obvious normalization for the density, pressure 
and temperature. Then the mean flow variables and stresses should expand like 

 
                             ( ) ( ) ( )1

1 , ,T Tv U Y U Y= +y y …ε +                              (A.1) 
 
                             ( ) ( ) ( )12, ,T T TY Y= +v V y V y …ε ε +                           (A.2) 
  

                            ( ) ( ) ( ) ( ) ( )1 22, , ,e T T Tp P Y P Y P Y= y + y + y +…ε ε                    (A.3) 

 
                               ( ) ( ) ( )1, ,T TR Y R Y= +y y …ρ ε +                               (A.4) 
and 
 

               ( ) ( ) ( )0 1 22 21 ,
2j j j j j j je v v v T T T−′ ′ ′ ′≡ − + + = + + +…μ μ ν ν μ μ μ

γρ δ ρ σ ε ε      (A.5) 

 
where 
                                                             1Y y≡ ε                                                (A.6) 
denotes the slow streamwise “source” variable, and 
 
                                               { }2, 3T y y=y                                                (A.7) 
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                                                          { }2 3,T v v=v                                              (A.8) 
 
denote cross flow variables. 

Substituting these into the mean flow equations (2.7) to(2.9) (written in terms 
of the “source” variable ) and assuming that the generalized Reynolds stresses 
vanish in the free stream, shows that the result will only balance if 

y

 
                               ( ) ( ) ( )0 0 0

1 1 4 0 for 2,3j j jT T T j= = = =                               (A.9) 
  

                              ( )( ) ( )0 0 (no sum on 2,3)jj jl
j l

P T T j l
y y
∂ ∂

− = ≠ =
∂ ∂

               (A.10) 

and  
 

                     ( ) ( )( ) ( )1 1 1 (no sum on 2,3)jj jl
j l

P T T j l
y y
∂ ∂

− = ≠ =
∂ ∂

  .             (A.11) 

 
The lowest order mean flow equations become 
 

                                           0oD R =                                                     (A.12) 
  
                                                    oD RU S=                                                   (A.13) 
              

                           
( )

( )
( )22

1
1 , for , 2,3,jl

o j j
j l

TPD RV T j l
y Y y

∂∂ ∂
+ = + =
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                       (A.14) 

and  
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+ = + + +⎢ ⎥⎜ ⎟− ∂ −⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤∂
+ + + + + =⎢ ⎥
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γ
γ γ

γ

        (A.15) 

 
 where the operator is now given by 0D
 

                             0 for 2,3j
j

D U V j
Y y
∂ ∂

= + =
∂ ∂

                            (A.16) 

and we have put 
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                    ( )( ) ( )0 1
11 1 , for 2,3j

j

S T P T j
Y y
∂ ∂

≡ − + =
∂ ∂

.                         (A.17)                 

 
Equations(2.21), (A.3) and (A.5) imply that 
 

                       ( )( ) ( ) ( )( ) ( )1 0 1 20ij ij ij ijP P T T= + − + +θ δ ε ε ε                        (A.18) 

 
and it therefore follows from (A.10) and (A.11) that 
 

                                             ( )2
1 0ij

i
j

S
y

∂
= − +

∂

θ
εδ ε .                                         (A.19) 

 
Appendix B Details of Critical Layer Solution  
               
      Equation (4.35) can be written as 

                         

                  2 0
54 142c

c c c c c
c

y UV U y g U V U g
Y y Y⊥

⊥

⎛ ⎞ 0⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ′− − = +⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠
α  (B.1) 

or since the chain rule implies that 
  

                                              
( )( ),

0cc
c

c

dU y Y Yy UU
Y Y dY

∂ ∂⎛ ⎞′ + = =⎜ ⎟∂ ∂⎝ ⎠
 (B.2) 

as 

 2 0
54 142 cy g U g

y ⊥
⊥

⎛ ⎞∂ 0′− =⎜ ⎟∂⎝ ⎠
α  (B.3) 

And it, therefore, follows that 
 
 

( ) ( ) ( ) ( )0 2 2 2 2 2 2 2 2 2
54 4

2ˆ2 exp. xp. exp. xp.c

y
g c a y e e

η
α α α η α η

η
d dα η η⊥
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    ( ) ( ) ( )2 2 2 2 2 2 2 2 2
4ˆ2 exp. 1 xp.c

y
c a y y e dα α α η α η η⊥ ⊥
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 which implies that =0 in ,0

54ˆ ag (4.27). Inserting (4.41) into (4.33) shows that 
satisfies                                             0

4tg
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c c t
y
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Y y ⊥
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⎛ ⎞∂
s

∂ ∂⎛ ⎞− − =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
−

γα                                      (B.5) 

 
which, in view of (4.44) possesses the solution  
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that matches with the 2nd equation(4.27). And inserting this along with 
equations(4.43) and (4.45) into equation(4.34) and using (4.29) and (4.39) shows 
that   
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which, in view of the 2nd equation(4.27), implies that              
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Appendix C Uniformly Valid Formulas for Propagator 
Components 
 
In the “outer region” where the source point, ,Ty  is outside of the critical layer, 
equations(4.21),(5.20) and (5.32) imply that  
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where the Doppler weighted cosine function C  is defined by 
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      To obtain the corresponding formulas in the “inner region”, notice that 
equations (4.54) and (5.22) imply  
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and use the coordinate transform  
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It therefore follows that  
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Then since equations (4.48) to (4.50) show that 
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it follows from the coordinate transform (C.7) that 
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to the lowest order of approximation. And similarly that  
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Using the product rule (see discussion at the end of section 4), to combine 
equations (C.1) to (C.17) and retaining only the lowest order approximation within 
the critical layer, we obtain the uniformly valid approximations to the sums and 
products  
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of the dominant components, where and are given by ijG 0z cC (6.15) and (6.16). 

 
Appendix D Isotropic Source Model 
 
Inserting equations(6.11) and (6.12) into(5.31) yields  
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where  is defined byijG (5.32). Then since 
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and  
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And, in view of (C.18) to(C.20), it follows that  
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where  is given bycC (6.16). And, it now follows from (C.21) and(C.22) that 
equation (6.14) holds. 
 
Appendix E Axisymmetric source Model  
 
Goldstein & Rosenbaum (1973 a) show that  
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with ijklI  defined by equation (6.23) 11 1111 1212 ,Q I I≡ − 12 13 1212 1122 ,Q Q I I= ≡ +  
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It, therefore follows from (C.18) to (C.22) and (6.16) that equation (6.24)holds. 
 
Taking  shows that ij ijH = δ
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Appendix F Details of Spectral Component Model  
     
Integrating equation(6.34) by parts shows that 
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where   are defined by equations
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where is a modified Bessel function of the second kind.  (Campbell & Foster, 
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which can now be rewritten as equation (6.35) . 
 
 Appendix G Axisymmetric Jet 
             
         When expressed in polar coordinates, the coefficients in equations(6.14) 
and (6.27) become  
 

( )
( )
( )

2
2

00 1
1 cos 2 1 cosT T

cc
C M

M M
∞γ −

∇ −
− θ − θ

GG
∇  

 

 59



       
( )

( )
( ) ( )

2 22 2 2
00 0

2 2

1
1 cos 2 1 cos 1 cos

cc c CC M
r M M r M r

∞

⊥ ⊥ ⊥

γ − ∂∂ ∂
= − +

′∂ − θ − θ ∂ ∂ϕ− θ

GG G
       (G.1) 

 
And 

( ) ( ) ( )
( ) ( )

2
22 22 0

23 22 out 2out 4out33 1 cos1 cos

ccG
r r MM ⊥ ⊥

∗
⎡ ⎛ ⎞⎢ ∂ ⎜ ⎟− Γ Γ = ⎢ ⎜ ⎟′∂ ∂ϕ − θ− θ ω ⎢ ⎝ ⎠⎣

Re
G

 

 

( )

2
0

2 2
1 1

1 cos
r

r

c

r rrM
⊥

⊥

∗
′ ′ϕ ϕ

⊥ ⊥⊥

⎤⎛ ⎞⎛ ⎞∂ ⎥⎜ ⎟− +⎜ ⎟⎜ ⎟⎥⎜ ⎟∂ − θ ⎝ ⎠⎥⎝ ⎠ ⎦

Re 0 0

G
G G

∗
               (G.2) 

 
where  is defined by C (C.4). Since 

 

( ) ( )

2 20
2 2 2 2

1 1 1 1
1 cos 1 cos

r
r r

c c
r rr rM M

⊥

⊥ ⊥

∗ ∗
′ ′ ′ ′ϕ ϕ ϕ ϕ

⊥ ⊥⊥ ⊥

⎛ ⎞ ⎧⎛ ⎞ ⎛ ⎞∂ ⎪⎜ ⎟ + = − +⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟⎜ ⎟∂ − θ − θ⎝ ⎠ ⎝ ⎠⎪⎩⎝ ⎠

Re Re0 0 0 0

G
G G G G

r⊥

 
 
 

( )
( )

2
2 2

0 2 2
1 1 1 11

1 cos
r r

cC
r rr rM 2⊥ ⊥

∗ ∗
′ ′ ′ ′ϕ ϕ ϕ ϕ

⊥ ⊥⊥ ⊥

⎫ ⎡⎛ ⎞⎪ ⎢+ω − + = − +⎜ ⎟⎬⎜ ⎟ ⎢ − θ⎝ ⎠⎪ ⎣⎭
Re0 0 0 0G G G G G  

 
 

( ) ( ) ( ) ( )
2 22 222 2 4 2

0 0

2 2

1 1 cos 1 1 cos
     

2 4

C M C M

c c

⎤ω − − θ ω − − θ
⎥+ −
⎥
⎦

G G
               (G.3) 

equation (G.2) becomes 
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Integrating these over the circumferential direction and using equation(7.11) 
shows that 
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Inserting these into equations (4.21)and (6.27) shows that (7.12) holds. 
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Figure 4 Comparison of the functional form (6.32) with experimental data.  
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Figure 5 Variation of ( )0/C Cτ τ  with time scale parameter /U k ε′  
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               Figure 6 Comparison of Predictions with data 
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Figure 7.  Comparison with best previous results obtained from Glenn JeNo code 
(Khavaran, Bridges,. & Georgiadis, N., 2005) 
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                                                    Part (c) JM = 0.5 
Figure 8.  Contribution of individual terms to overall spectra at  030θ =
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        Figure 9 Contribution of individual slices to overall spectrum for 1.4  jet JM =
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