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This paper is concerned with Rapid Distortion Theory on transversely sheared mean flows that (among 
other things) can be used to analyze the unsteady motion resulting from the interaction of a turbulent 
shear flow with a solid surface. It expands on a previous analysis of Goldstein, Leib and Afsar (J. Fluid 
Mech. Vol. 824, pp. 477-51) that uses a pair of conservation laws to derive upstream boundary conditions 
for planar mean flows and extends these findings to transversely sheared flows of arbitrary cross section. 
The results, which turn out to be quite general, are applied to the specific case of a round jet interacting 
with the trailing edge of a flat plate and used to calculate the radiated sound field, which is then compared 
with experimental data taken at the NASA Glenn Research Center.  
_____________________________________________________________________________________ 

1. Introduction 

Many engineering problems involve the interaction of turbulent shear flows with solid surfaces (Bilka et 

al, 2014; Tufts, Wang and Wang, 2018; Ross, 2009). Tufts, Wang and Wang (2018) used Large Eddy 

Simulation (LES) to study the sound generated by the interaction of an aerofoil with a turbulent shear 

layer and Ross (2009) measured the acoustic radiation from these flows. However, this type of 

interaction can also be studied analytically by using Rapid Distortion Theory (RDT). 

RDT uses linearized equations to analyse rapid changes in turbulent flows such as those that occur when 

the flow interacts with a solid surface. It applies whenever the turbulence intensity is small and the 

length (or time) scale over which the changes take place is short compared to the length (or time) scale 

over which the turbulent eddies evolve (Batchelor & Proudman,1954; Hunt,1973; Goldsten,1978a, 

1979a;  and Sagaut & Cambon, 2018). When interpreted asymptotically, these assumptions imply, 

among other things, that it is possible to identify a distance/time that is very (infinitely) large on the 

scale of the interaction, but still small on the distance/time scale  over which the turbulent eddies 

evolve. The RDT assumptions also imply that the resulting flow is inviscid and non-heat conducting and 

is, therefore, governed by the Linearized Euler Equations, i.e., the Euler equations linearized about an 

arbitrary, usually steady, solution to the full nonlinear equations— customarily referred to as the base 

flow. But these equations can sometimes be used even when the RDT assumptions are not satisfied (e.g. 

for the prediction of Mach wave radiation at relatively low supersonic Mach numbers). A more detailed 

discussion of the validity of RDT can be found in Hunt and Carruthers (1990) who also give some 

examples of the types of problems to which it can be applied.  
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RDT was originally developed to study incompressible, locally homogeneous turbulence (Tayor,1938; 

Batchelor and Proudman,1954; Moffatt, 1967;  Xie et al,2017 and Sagaut & Cambon,2018)  Extensions to 

non-homogeneous turbulence were developed by Hunt (1973) and by Goldstein (1978a, 1978b, 1979a, 

1979b), who further extended the theory to include compressibility  and thereby allowed it to be used in 

aeroacoustic applications. The locally homogeneous assumption obviates the need for an upstream 

boundary condition, but the focus of the present paper in on non-homogenous RDT,   which usually 

provides a much more realistic representation of the turbulent interactions.  Or more specifically, it is 

concerned with non-homogenous RDT on transversely sheared mean flows.  

The general theory was developed in a series of papers by Goldstein (1978b, 1979b) who showed that 

the solutions to the latter class of RDT problems can be expressed in terms of the Rayleigh equation 

Green’s function and two convected quantities that can be specified arbitrarily.  Goldstein et al (2013a, 

2017) showed that the pressure and transverse velocity fluctuations can be represented by a 

convolution product of the Rayleigh equation Green’s function and one of the arbitrary convected 

quantities, which allowed them to represent the Fourier transforms of these quantities as the product of 

a space-time Fourier transform of the Green’s function and the Fourier transform of the convected 

quantity. They used this result to predict the acoustic spectrum of the sound produced by the 

interaction of a planar jet with the trailing edge of a flat plate and thereby established the applicability 

of RDT to this problem (which was only partially done in earlier work by Goldstein, 1979b and  Olsen and 

Boldman, 1979). The low-frequency, Fourier--transformed --Green’s function--which turns out to be 

independent of the mean flow velocity profile for the zero mean surface velocity case considered in that 

reference--was used to calculate the acoustic field, since the experiments show that most of the sound 

is generated at low frequencies. (The RDT analysis remains valid at low frequencies because, as noted 

above,  the RDT assumptions ensure the existence of a time scale that is large compared to the scale of 

the interaction but still small relative to the decay time of the turbulent eddies.)  One of the purposes of 

this paper is to extend these ideas to jets of arbitrary cross section and use the results to predict the 

noise radiated by a round jet interacting with the trailing edge of a flat plate. 

An important consequence of the disparate length scales is that boundary conditions can be imposed in 

a region that lies infinitely far upstream on the scale of the interaction but is still close to the interaction 

site on the evolution scale of the undisturbed turbulence. The two arbitrary convected quantities, which 

do not decay at upstream infinity, can, therefore, be determined from these upstream  conditions.  

However, a major problem with this is that these quantities do not correspond to physically measurable 

variables, which must decay at large upstream distance when calculated from RDT. But Goldstein et al 

(2017) showed that appropriate gradients of these variables do not decay at upstream infinity and used 

this finding to relate these gradients to the arbitrary connected quantities and thereby developed  

physically realizable upstream boundary conditions for planar mean flows.                                                                  

The present paper extends these findings to transversely sheared mean flows of arbitrary cross section, 

uses the results to relate the pressure spectrum to the second order turbulent velocity spectrum at 

upstream infinity and develops an appropriate model for the latter quantity. The results show that the 

streamwise Fourier transform of the low frequency Green’s function is again independent of the mean 

velocity profile for a large class of zero surface velocity mean flows with non-planar cross sections. This 

means that the low frequency Green’s function is the same as the low-frequency limit of the zero-mean 
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flow Green’s function, which can frequently be computed by using well-known standard techniques 

(Noble, 1958).  

The final formula is used it to predict the sound field produced by a circular jet interacting with the 

trailing edge of a semi-infinite flat plate. But this result is quite general and is expected to apply to any 

sufficiently localized flow configuration (such as the multiple jet configuration shown in figure 1) whose 

velocity field can be represented by level surfaces in an appropriate orthogonal coordinate system.    

 

 

                                          

  Figure 1 Supersonic cruse concept aircraft with top mounted engines.  Ramakrishnan et al NASA CR- 

2018-219936 (photo provided by Dr. James Bridges) 

Linear theories have also been used to study  shock-turbulence interactions and are often referred to as 

Linear Interaction Approximations (LIA) in this context (see for example, Ribner, 1953; Moore, 1954;        

Woushuk et al. , 2009; Huete et al. 2010 ,2011 and 2012,  as well as an extensive discussion of the 

subject by Saguat & Cambon (2018) ). Compressible RDT and LIA share some common features (Huete 

Ruiz de Lira, 2010, 2011, 2012 and others). For example, both approaches decompose the flow into 

hydrodynamic and non- hydrodynamic components and both use transform methods to eliminate the 

time dependence.  

Similar types of linear analyses are also used in fields beyond fluid mechanics and acoustics, such as  

astrophysics. The monograph by Sagaut and Cambon (2018) contains a comprehensive discussion of 

these analyses and of their application to a wide range of problems in physics and engineering.  

A pseudo-linear approach called resolvent analysis, which was originally developed to study wall 

turbulence (see McKeon & Sharma 2010), has recently been used to predict the noise generation from 

turbulent flows. This approach decomposes the problem into forcing and response modes and seeks to 

determine dominant source modes for the development of reduced-order models of the sound field. An 

example of its application to the trailing-edge problem is given in Abreu et al. (2019).  

 

The outline of the paper is as follows: It begins in section 2 by summarizing and reformulating the results 
obtained in Goldstein et al (2013a) for the formal solution to the complete inhomogeneous RDT problem. 



 4 
 

Formulas are written down for the pressure fluctuation and a kind of particle displacement, both of which 
depend on one of the convected quantities alluded to above. These quantities are related by a 
conservation law which was originally derived in Goldstein (1979b) and in Goldstein et al (2013b) and  
rearranged into a more convenient form in the present paper.  

The solutions are Fourier transformed in section 3 and the results are used in section 4 to obtain specific 
formulae for the pressure and particle displacement spectra, which are then combined with a result 
obtained in Goldstein et al (2017) to show that the pressure fluctuations and particle displacement drop 
out of  the conservation law at upstream infinity where the flow is uninfluenced by the solid surface 
interaction. This result is then used to obtain an upstream boundary condition that relates the unknown 
convected quantity (or more specifically its spectrum) to the experimentally measurable transverse 
velocity spectrum and a parametrised model for this quantity is introduced. The low-frequency Green’s 
function is discussed in section 5 and a generic--but incomplete--formula for its Fourier transform is 
derived for flow configurations that can be conformally mapped into a doubly infinite strip.  

The specific case of an arbitrary cross section jet or shear layer  interacting with the trailing edge of a flat 

plate is discussed in section 6 and an explicit solution for the Green’s function is given in this case. As 

already mentioned this result turns out to be independent of the mean velocity profile and is therefore 

the same as the low frequency limit of the zero mean flow Green’s function, which can frequently be 

calculated by well-known classical methods. We expect this finding to be quite generic and to apply to 

many low frequency transversely sheared RDT problems.  

The Green’s function solution is substituted into the formula for pressure fluctuation which is  then used 

to obtain a relatively simple expression for the far field acoustic spectrum. And finally, this result is used 

in section 7 to obtain numerical predictions of the radiated sound field. The higher frequency 

predictions are greatly improved when the  1O frequency zero-mean-flow Fourier transformed 

Green’s function is used in place of its low-frequency approximation.  Some concluding remarks are 

given in Section 8.  

2. Basic equations 

The flow is assumed to be inviscid and non-heat conducting and the fluid is assumed to be  an ideal gas 

so that the entropy is equal to  ln /vc p  and the squared sound speed is equal to /p  , where p

denotes the pressure,  the density , the specific heat ratio /p vc c  , and ,p vc c  are the specific heats at 

constant pressure and volume respectively. Then the pressure 0p p p   and mass flow  (or density 

weighted velocity) perturbations              

                                                              1 2 3 1 2 3, , , ,  u u u v v v    u                                          (2.1) 

(where  1 2 3, ,  v v v   v denotes the velocity perturbation and  T y   denotes the mean density)on 

a transversely sheared mean flow with mean pressure 0p =constant, velocity   ,0,0TUv y  and 

mean sound speed squared  2

Tc y , decouple from the entropy fluctuations and  are governed by the 

linearized momentum and continuity equations  
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                                                                             0
1 0,   1,2,3i
i j

j i

D u U
u p i

D y y




 
   

 
                                     (2.2) 

                              and 

                                                        20 0j

j

D p
c u

D y

 
 


,                                                                (2.3) 

where 0 1/ / /D D U y       is the convective derivative and,    1 2 3 1, , , Ty y y y y y with 1y  in the 

streamwise direction and  2 3,T y yy .  

Goldstein et al (2013a) show that the pressure fluctuation p  produced at the observation point 

 1 2 3, ,x x xx  by the interaction of the arbitrary convected disturbance   1c T Ty U / y , y    

with any mean-flow-aligned solid surface embedded in this flow is given by 

                                         
 

1|,  , , ,  .

T

c T

TT V

y
p t G t d d

U


 
    

 
 x y x y y

y
                               (2.4) 

where   1c T Ty U / y , y   can be specified as an upstream boundary condition and  |, ,G ty x

denotes the Green’s function that satisfies the inhomogeneous  Rayleigh  equation  

                                                        
3

0

3
| G , ,

D
L t t

Dt
     y x y x                                          (2.5) 

 

where 

                                          2

2

2
20 0

1

2
j ji i

D D U
L c

D D y y y
c

y y

  
  

    

  


  
                                          (2.6) 

is the well-known compressible Rayleigh operator. The first two arguments of  , | ,G ty x represent 

the dependent variables and the second two represent the source variables,T denotes a very large but 

finite time interval, V  is a region of space bounded by cylindrical (i.e., parallel to the mean flow) 

surface(s) S  that can be finite, semi-infinite or infinite in the streamwise direction and  ˆ ˆ
inn = is the 

outward-drawn unit normal to S .  

The operator  

                                                                      0

1

 T

D
U

Dt t x

 
 
 

x                                                       (2.7) 

denotes the convective derivative in the x  coordinate system, and  |, ,G ty x satisfies the boundary 

condition 

                                                      |, , 0  for ,t S  y x y                                                                     (2.8) 

where     is determined to within an arbitrary convected quantity by                                   

                                         
   2

0 2

2

| |, , , ,
ˆ ,j

j

D t G t
n c

D y

 



 




y x y x
                                                        (2.9)  
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on any solid (impermeable)surfaces S  that are present in the flow, along with the jump conditions 

                                            

                                                        00,   for TG S      y                                                         (2.10) 

across any surfaces 0S  of discontinuity of the mean velocity profile that may be present in the flow. The 

notation   denotes the jump in the indicated quantity across these surfaces, which can represent 

downstream wakes (or vortex sheets) and can support spatially growing instability waves that can be 

generated by imposing a Kutta condition at the trailing edge or suppressed by imposing a boundedness 

requirement. It is worth noting that the analysis is somewhat unconventional in that the direct Green’s 

function,G , now plays the role of an adjoint Green’s function in the solution (2.4) for p’ (Goldstein, 

Afsar and Leib, 2017). 

The results given in Goldstein (1979b) and Goldstein et al (2013a, 2017) show that the mean density-

weighted velocity perturbation iu  is given in terms of the mean-density-weighted pseudo-velocity 

perturbation                     

                                              0
1 ,   for 1,2,3i i i j

j

D U
u i

D y
  




  


                                                  (2.11) 

by 

                                              1

2

1
, ,i i ijk T

j k

yU
u u

y y Uc

   
     

   
y                                    (2.12) 

where  1 / , Ty U  y  is a second arbitrary convected quantity and the ‘particle displacement’ i  is 

given by  

                   
 

1| , , ,  ,   for 1,2,3

T

i i c T

T
T V

y
G t d d i

U


 
         

 
  y x y y

y
                      (2.13)  

with  |, ,iG ty x determined in terms of the Green’s function derivative  |, , / iG t x  y x  of    

 |, ,G ty x by               

                                   
2
0

2
| |, , , , ,   for 1,2,3i

i

D
G t G t i

xDt


   


y x y x                                  (2.14) 

Equation(2.12) shows that mean-density-weighted transverse velocity perturbation u  and the 

divergence of the velocity perturbation can be determined from the mean-density-weighted-pseudo-

velocity perturbation iu by  

                                                  
1 1

i i

i i

U U
u u u

U y U y


 
 
   

                                                         (2.15) 

and 
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2 2

.i i

i i

c u c u

y y

 


 
                                                                  (2.16)                                                          

 Goldstein et al (2013b) show that the arbitrary convected quantity  1 / ,c Ty U y  is related to the 

pressure, transverse particle displacement 
j and

iu  by the conservation law    

                                                    
1

 i
c j ijk j k

i j i

N U
p N

y y y y
   
   

         

                              (2.17)                                                       

where  

 

                                                                           k
i ijk

j

u

y


  


                                                                   (2.18) 

is the mean-density-weighted vorticity based on the pseudo-velocity and 

                                                                 
2

2
,i

i

c U
N

yU





                                                                       (2.19) 

denotes a scaled mean velocity gradient.  Differentiating by parts and using the well-known tensor 

identity 

                                                                jik jlm il km im kl                                                                (2.20) 

shows that equation (2.17)can also be written as  

                               
1

   i k i k
c j k k

i j i k i

N N N uU
p N

y y y y y y
 
       

                

                            (2.21) 

where 

                                                                    2,k k

k

u
y


   


 y u                                                  (2.22) 

As noted in Goldstein et al (2013a, 2017), the present formalism can be thought of as a generalization of 

a result obtained by Orr (1907) for the small-amplitude, unsteady, two-dimensional motion on an 

incompressible flow with uniform mean shear, with the most important difference being that the 

arbitrary convected quantity, 𝜔̃𝑐, no longer corresponds to an actual physical variable.  

There have been many attempts in the literature to decompose the small amplitude unsteady motion 

on non-uniform mean flows into acoustic and hydrodynamic components. But it is impossible to 

unambiguously decompose the unsteady motion on an arbitrary transversely sheared mean flow into 

such components. We can however identify a hydrodynamic component of the motion by requiring  that 

it not radiate any sound at subsonic Mach numbers, with all the acoustic radiation being accounted for 

by the remaining non-hydrodynamic component. This can be accomplished by dividing the Rayleigh 

equation Green’s function  , | , tG y x  that appears in the solution (2.4) into two components, say 

                                                    0
|, , , | , , | ,

s
G t G t G t    y x y x y x                                  (2.23) 
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where    0
|, ,G ty x denotes a particular solution of Eq.(2.5) ,which can either be  defined on all space 

or, be required to satisfy homogeneous boundary conditions on extensions of the bounding surfaces S  

that range from minus to plus infinity in the streamwise direction. This decomposition implies the 

decomposition  

                                               0
|, , , | , , | ,

s

i i iG t G t G t    y x y x y x                                      (2.24) 

 of the Green’s function derivative (2.14)and the decomposition  

                                               
0

, , ,
s

p t p t p t   x x x                                                              (2.25) 

for the pressure fluctuation, where 
   
0

,p t x , which is given by (2.4) and (2.5) with  |, ,G ty x  

replaced by    0
|, ,G ty x  and, since there are no edges in this (streamwise-homogeneous) flow ,does 

not produce any acoustic radiation at subsonic Mach numbers. The corresponding solution can, 

therefore, be identified with the hydrodynamic component of the unsteady motion. The  remaining 

‘scattered component’
   |, ,
s

G ty x of(2.23), satisfies the homogeneous Rayleigh’s equation along 

with appropriate inhomogeneous boundary and jump conditions on the streamwise discontinuous 

surfaces S and 0S and the corresponding ‘scattered solution’
   ,
s

p t x , therefore, accounts for all of 

the acoustic radiation. 

The decomposition(2.24) also implies the decomposition 

                              0 0
,   , , , , , ,s s

i i i i i iut t t t u t u t     x x x x x x                           (2.26) 

for the transverse particle displacement   ,i t x  and the mean-density-weighted pseudo-velocity 

perturbation iu  where    0 ,i t x  is given by (2.13) with  |, ,iG ty x  replaced by    0
|, ,iG ty x . 

3. The pressure spectrum  

Taking the Fourier transform of equation (2.4), applying the definitions (2.23)-(2.25), using the 

convolution theorem and noting that G satisfies the inhomogeneous Rayleigh equation (2.5), and  

therefore depends on   and t only in the combination t   , shows that  

          
              1

2 /
|: 2 : , / , ,   0, ,T

T

i x U

T T T T

A

p e G U d s  
y

x y x y y y
  

                (3.1) 

           where
T
A  denotes the cross sectional area of the volumeV ,    : lim : ;

T
T


x x    for = ,p           

          

                                      
       

1
: , ,    0,

2

T

i t

T

p T e p t dt s
  




 x x                                       (3.2)    
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                                                 
1

 : , , ,
2

T

i z

T c T

T

T e z dz 




  y y                                               (3.3)     

and 

              
 

       1 1 1

1 12

1
; , , ,   0,

2

i k y x t

TG k e G t d dy s

 
     

 

     


 y x y x         (3.4)  

satisfy the Rayleigh equations 

                                           
     

 

0 2

2
0,     

2

s T TG G
 

  


x y
L L                                                       (3.5) 

in which   

                        
 

 

 

222
2 1

2 2

1 1

/
1 2,3     

/ 1 / 1j j

c kc
j

y ykU kU

  
    
    

L                         (3.6) 

denotes  the reduced Rayleigh operator and  
   0

1| : ,TG ky x is either defined on all space or is 

required to satisfy                                                                               

                   
 

   0

12

1

|
ˆ

: , 0,   for  
j

T T T

jT

n
G k C

ykU


 

  

y x y
y




                                       (3.7) 

 where TC  denotes the bounding curve/curves that generate the doubly infinite surface/surfaces that 

extend S from 
1
y    to

1
y   . The streamwise homogeneous Green’s function    0

1| : ,TG ky x   

will then depend on 1y and 1x only in the combination 1 1x y and we can, therefore, write 

                                               0 0

1 1| | .: , : ,T T TG k G ky x y x                                                        (3.8) 

 

4. Upstream Boundary conditions 

Taking the Fourier transform of equation(2.13), applying the definitions (2.23), (2.26) and (3.4) using the 

convolution theorem and recalling that 
 0
G  depends on   and t only in the combination t    shows 

that  

 
  

          
   

 
2 0

0 /
1

| : , /2
, :  ,

T

T i T T T

i T T

T T

T

A

Ui x U G U
d

i U U
e
  

  


  


y y y x y
x y y

x y
  (4.1)              
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where  

                                              
       0 01

, lim ,
2

T

i i
T

T

i t t dte  




 x x                                              (4.2) 

and the Green’s function 
   0

1| : ,i T TG ky x   also depends on 1y and 1x only in the combination 

1 1x y and is, therefore, given by   

           
   

  
   0 0

1 1

1

1
| : , | : , ,  2,3i T T T T

iT

G k G k i
xi kU

 



 


y x y x

x
                          (4.3) 

The integral in (4.1) has the same singularity as that in equation (4.13) of Goldstein et al (2017) (the 

corresponding the formula is for   0

1, /i x x   ) which means that it has to be interpreted as a 

Cauchy principal value  and the procedure used in Appendix C of that paper (which applies to any 

transversely sheared mean flow) can be applied to this equation to show that  

                            
 

 0

1

1

/
1

, , ,  for 2,3 as 
T

i i T

Ui x

i x
x

e


    

x

x xL                                   (4.4) 

when causality is imposed, which, in turn, implies that  

                              0

1 1

1

1
, / ,  for 2,3  as i i T Tt t x U i x

x
    x x , xL                           (4.5) 

where the purely convected quantity   1 2/i Tt x U x , xL  is a function of the indicated arguments 

and  ,i T xL  is its Fourier transform.  

Inserting (4.5) into(2.11) shows that   

                              0

1 12

1

1
, / ,   for 2,3  as i i T Tu t t x U i x

x
   x x , xU                          (4.6) 

and, therefore, that 

        
     

 

 0

12

1

/
11

: lim , , ,  for 2,3  as 
2

TT

i t

i i i T
T

T

Ui x

u e u t dt i x
x

e



 




   
x

x x xU    (4.7)              

where,   1 2/i Tt x U x , xU  and  ,i T xU have the obvious meanings. 

Inserting (4.6) into(2.12) and using the result in the momentum equation (2.2) shows that  

              

   
    

0

1 13

1

, 2
/ ,  as ,  for 2,3i

i

p t
U t x U x i

x x


   


T T T

x
x x , xU                        (4.8) 

And it therefore follows from (4.5) and (4.6) that the conservation law (2.21)and (2.22) becomes  

                                                                  0

1

1

,  as  c
k kN y

y


  


                                                    (4.9) 

where 



 11 
 

                                                                0 0 02,k k

k

u
y


   


 y u                                                     (4.10) 

But using(2.16)  and the continuity equation (2.3) in (4.10)shows that 

                                            
     

 
 

0 2
0 0 02 2 0,k k j

k j

D p c
u c u

y D y


   

            

 y                           (4.11) 

And it therefore follows from (4.6)and (4.8) that  
 

                                               0 02

1,   for 2,3 as  k ku k y    y                                         (4.12) 

where  

                                                                    
2 2

2

2 2

2 3y y


 
  

 
                                                                    (4.13) 

Equations(2.15),(4.6),(2.19) (4.9) and (4.12) then imply that 
 

      
2 2

02 2

12 2 2

1 1 1 1

1 1 1
+O  = / , +Oc

k k T

k k

c U c U
u y U

y y y y y yU U


 

        
         

         
yU                                                                 

                                                                     
2 2

1 14 2
/ , ,   as  ,k T

k

c U
y U y

U y




 
  

 
yU          (4.14) 

which shows, among other things, that c  can be expressed in terms of the hydrodynamic component

 0
u  of the physical velocity u  instead the hydrodynamic component of the pseudo-velocity u  at 

upstream infinity and thereby provides the required upstream boundary condition that relates c  to an 

actual physical quantity. Equation (4.14)can also be written as  

                           
2 2

1 14 2

1

/ , ,   as  ,c
T

c dU
u y U u y

y U du







 
   

 
yU                    (4.15) 

where 

                                                                                         k

k

u

y u




 

U
U                                                                                 (4.16) 

when the level surfaces of  U U u , say   constantTu y , are more or less concentric and form an 

orthogonal coordinate system with some function  Tv y ; u  then denotes the velocity component 

perpendicular to these surfaces.  

These equations imply that the upstream boundary condition (4.15)will be satisfied when  : ,T T y  

is related to the Fourier transform  

                                                   
1

2
; , ,

T

i

T T

T

T e d


   



 y yU U                                       (4.17) 
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of the upstream transverse velocity coefficient  , T yU  (in the, as yet, arbitrary orthogonal 

curvilinear co-ordinate system  , Tu v y ) by 

                                    
2

2

4
: , ; ,T T

i c dU
T u T

U U du


     y yU                                                (4.18) 

which determines the Fourier transform  : ,T T y of  ,c Tz y , and therefore the unknown 

convected quantity   1 / ,c T Ty U   y y itself, in terms of the Fourier transform  ; ,T T yU of 

 , T yU , which is related to the upstream limit of the physical variable  0

ku  by(4.14). 

Since the focus of this paper is on fully developed turbulent flows it is reasonable to assume that the 

source function  ,c T  y is a stationary random function of   (Pope, 2000; Wiener, 1938) and it then 

follows from equation (2.4) that the pressure fluctuation  ,p t x should also be a function of this type. 

The spectrum of the scattered component of the pressure fluctuation, which is usually of primary 

interest in aeroacoustics and structures problems is then given by (Weiner, 1938)                                                                                                                                     

       
       : , : ,1

, , 2 lim
2 2

s s

i

T

p T p T
I e p t p t d

T





 
  










 
    

x x
x x x   (4.19) 

where the  bracket denotes the time average                            

                                 
1

, lim ,
2

T

T
T

p p p p d
T

      



     x, x x, x                                     (4.20)                     

Inserting the solution (3.1) for the scattered component of the pressure fluctuation  into (4.19) and 

using (4.18)shows that its spectrum depends on the turbulent   fluctuations only through source 

spectrum 

          
   : , : ,1

, , 2 lim
2 2

T Ti

T T c T c T
T

T T
S e t t d

T


 

    








     
y y

y y y y                                                          

       
   

   

       2 2
2

3 3

; , ; ,
lim

2

T TT T

T

T Tc c dU u dU u
u u

du du TU u U u



 



      
y yy y U U

               (4.21)

when the level surfaces of  U U u , say   constantTu y , are more or less concentric and form an 

orthogonal coordinate system with some function  Tv y .  

The spectrum of the  gradient-wise velocity coefficient     lim ; , ; , / 2T T
T

T T T


 


   y yU U  must 

be modelled in order to use this equation to predict the source spectrum S .  An appropriate model for 

this quantity that is consistent with the transversely sheared model for the mean flow is given Appendix 

B. The results show that  the corresponding model for the source spectrum is given by 
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      
   

    1 12
4 2 2
2 2 2

/ // / 1
, : , , ,

2

i y U u y U udU du dU du
S u u v v l c A u v u v u u

U u U u
e

 
 

 


  



 
     

  
  

                                          
22 2

2 2 3 3 1 1 0exp , / / /f l l y U u y U u d                            

                              
     

2
4 2 2 20
2 12 2 2

/ /
, 1

1

fdU du dU du
l A u v c u u K f

U u U u
 

  
      

  

  (4.22) 

where  

                                                                                       0 ,                                                                        (4.23) 

 and 1K denotes the modified Bessel function of the second kind.   

5. The Fourier-transformed Green’s function  
 It is of course necessary to determine the Fourier transformed Green’s function before equation (3.1) 

can be used to carry out numerical computations. This must, in general, be done numerically and the 

calculations, which tend to be very sensitive to the boundary conditions, frequently require great care-

especially when mean the flow is discontinuous downstream of the trailing edge and therefore contains 

shear layers that can support spatially growing instability waves.  The Wiener-Hopf technique (Noble, 

1958)] can often be used to minimize these difficulties, but numerical computations are in most cases 

still required. Baker and Peake (2019) developed efficient numerical algorithms for carrying these out 

these computations.  However, as noted as noted in the introduction, the sound generated by the solid 

surface interactions turns out to be of low frequency in most applications of technological interest--

which means that the low frequency Green’s function can be used in the calculations.  The required 

computations can often be facilitated by first mapping the transverse geometry of the problem into an 

appropriate rectangular region.  

5.1 Conformal mapping 

To this end we suppose, with little loss of generality, that the level surfaces of 2c  coincide with the level 

surfaces constantu  introduced below(4.16) (i.e.,    2 2
 and c  cU U u u  ) and further restrict u and 

the orthogonal variable v  by requiring that 

                                                                 T T
W z u iv y y                                                               (5.1) 

be an analytic function of the complex variable  

                                                              3 2z y iy                                                                                     (5.2) 

that transforms the upper half -planez  into the strip, 0, ,u v     in the -planeW . (A 

specific example is given in Appendix A.) We also suppose that the impermeable surface S  is infinitely 

thin.   

Transforming the linear operator and delta functions in equations (3.5)and (3.6)leads to the following 

equation for     1 1, : , :TG u v k G u v k  x , y x ,   
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                                 
2

1, :
2

W T T T TG u v k u u v v
 

      
 

x , y x y xL                    (5.3) 

where  

      
 

 

 

 

2 2 2

2 2 2

1 1/ 1 / 1
W

c u c u

u u vU u k U u k

  
 
         

L  

                                                                   
  

 

22 2
12

2

1

/
1 .

/ 1

c u kdW

dz U u k

   
  

    

                                  (5.4) 

The appropriate boundary conditions for G  are that it be periodic inv  and remain bounded for all 

value of u .  

The decomposition (2.23) now implies that 

                                     0

1 1 1, | : , , | : , , | : , .
s

TG u v k G u v k G u v k x x x                            (5.5) 

  And the scattered component of the Green’s function can be expressed as the sum of its symmetric,

   1 2 3 1| , , : ,,s
G x x x ku v 


    1 2 3 1| / 2, , : ,,s
G x x x ku v 


  , and antisymmetric,

   1 2 3 1| , , : ,,s
G x x x ku v


    1 2 3 1| / 2, , : ,,s
G x x x ku v 


  , parts, which we now consider 

separately. These quantities have the representation  

             

 
   1 2 3 1| , , : ,,s
G x x x ku v 


    1 2 3 1| / 2, , : ,,s
G x x x ku v 


        

                    3 3 3 3

1 3 3,
1 2

|
1

: , ,
2

,sik x ik x
G k k dke e x xu v






         

                                                                                    
   3 3

1 3 3,
1 2

| : , ,,sik x
e G k k dkx xu v







             (5.6)

where we have put 

 

           1 3 1 3 1 3, , ,
1 2 1 2 1 2

| | |
1

: , , : , , : , ,
2

, , ,s s s
G k k G k k G k kx x x x x xu v u v u v

   
  

    (5.7) 

and the three overbars denote the Fourier transform 

                              
       3 3

1 3 1 3,
1 2

| |
1

: , , : ,
2

, ,ik x
G k k e G k dxx xu v u v







  x
 

 


                 (5.8) 

for 0,s  , where the hydrodynamic component   
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       0 0

1 3 1 3,
1 2 2

| |: , , : , ,, ,G k k G k kx x xu v u v                            (5.9)  

is independent of 1x  and satisfies the wall boundary condition 

                                   

   0

1 32
| : , ,

0,   for 0,   - .
,G k k

u v
u

xu v
   




                                (5.10) 

5.2. Solution for the low frequency Green’s function 

We now consider the low -frequency limit 1, 1k , and assume that  all lengths normalized by some 

characteristic length scale, such as the distanceh  between the nozzle centerline and the plate, all 

velocities by sound speed at infinity, say c , and the time by /h c . The solution then divides into two 

regions: an outer region where  1 2 1 3, 1k y k y O  and an inner region where  3 3, 1y y O .  

Figure 2 shows how these regions are transformed into the ,u v  plane by a conformal mapping of the 

type (A.1). The unconventional asymptotic structure shown in Figure 2 (b) is consistent with equation 
(A.7) which implies that the mapping 'reverses' the usual orientation of the inner and outer regions in 
the ,u v plane 
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b) 

      Figure 2. Inner and outer regions for jet trailing edge interaction a) in T y plane, b) in W-plane. 

Then since the delta function can always be set to zero when    T Tv vy x , the lowest-order 

solutions (i.e. less than  2 2 2

1 3O k k k   ) can be obtained by replacing (5.3) and (5.8)with 

                      
   1 2 1 3, : , 0,   0,,W G x x k k su v

   ,L                                       (5.11) 

for    1 , 1Tv O k O x and approximating WL   by  

                  
 

 

 

 
 

2 2 2
2

2 2 2

1 1/ 1 / 1
W

c c
O k

vM k k M k k

u u

u uu u


 

  
 

         

L                 (5.12) 

with 

                                       ,    ,   / .J J J JM u U u M k M M U c                                             (5.13)  

Multiplying (5.11) by inve  and integrating the result from  to   shows that        

                    1 2 1 3 1 3|, : , , : , , ,   0,
1 2

, n

n

inv
u xG x x k k G x k k seu v


 



    ,                       (5.14) 

where 

        
       1 3 1 3, ,

1 2 1 2
| , |

1
: , , : , , ,   0,

2

inv

n x xu x u v xG k k e G k k dv s


 



  






                     (5.15) 

satisfies the following infinite set of  second order ordinary differential equations      
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                                                            1 31 2
| , : , , 0nnG u x x k k


L                                                             (5.16)  

where    

                      
 

  

 

  
 

2 2 2

2 2

1 1

2

/ 1 / 1
n

M M

c c n
O

k k k k

d d
k

d d

u

u

u
u uu  


   
   


 

L                                   (5.17) 

and  

                                           
       0 0

1 3 1 3,
1 2 2

| |: , , : , , .n nx xu x uG k k G k k                                            (5.18) 

The solution to (5.11) with s    must match onto the spanwise Fourier transform of the outgoing 

wave outer solution, say    1; ,
s

G k y x , which applies in outer the region where
2 2 2

1 3Tx k k k   .

2 2 2
1 3, Ty k k k     1O .  Equations (A.9)and (A.10) suggest that the solution in this region should 

be expressed in the rectangular coordinates 2 3,y y  and therefore satisfy the inhomogeneous Rayleigh 

equation (3.5) where L  denotes the reduced Rayleigh operator (3.6) which can now be replaced by  

                        
2 2

2 2
12 2

2 3

k k
y y



 
  

 
L =                                                                    (5.19) 

Appendix C shows that the lowest order inner solution for the Fourier transformed symmetric 

component of the Green’s function that satisfies the wall boundary condition (2.8) for all values of 3y  is 

given by    

  
           0 0 0

1 3 1 3 1 32 2 2
| | |

1 1
G : , , G : , , G 0 ,0 : , ,

2 2
. ,x xk k k k xu v u v k k      

    
                 

         

   
 

   
2 2 2
1 3 22

0 2

1 3 2 2 23 2 2 2
1 3

2
|0 ,0+G : , , 1 ,  for  0

2

k k k x
k

x H x y O k x
e

k k k
k k






 



         
      (5.20)  

A similar analysis  for the antisymmetric component shows that the inner solution

   0

1 3|, : , ,
2

G u v x k k
   0

1 3|, : , ,
2

G u v x k k   turns out to be at least  
2 2 2
1 3 2k k k x

O k e 



 
 and 

the antisymmetric contribution to
   0

1 32
| : , ,, xG k ku v    can consequently be neglected. It therefore 

follows from equations (5.6)and (5.7) that the scattered component 
   1 3,

1 2
| : , ,,s

G k kx xu v  of the 

Fourier transformed low frequency Green’s function  1 3,
1 2

| : , ,,G k kx xu v   is given by 

           1 3 1 3 1 3, , ,
1 2 1 2 1 2

| | |: , , : , , : , ,, , ,s s s
G k k G k k G k kx x x x x xu v u v u v                                       
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                                                                2

1 3,
1 2

| : , ,,s
G k k O kx xu v                                          (5.21) 

Appendix D shows that the Fourier transform of the symmetric component of the scattered component 

of the Green’s function is of the form 

       

 
1 3

2

1

2
0

| , : , , 1 2
1 2

/ 1
, ss

u

G k k A a
M u k k

x du
c u

u v x


  

     




       

                                     2 2 2 2 2 2
1 3 1 1 3

ˆ : , ,   for 0inv
n

n

k k k e P u k O k k k u



 




       


       (5.22) 

 

6. An application of the general theory -Interaction of a jet and other shear flows 

with a trailing edge  

6.1 Formulation 
The scattered component of the Fourier transformed Green’s function can usually be found by using the 

Weiner-Hopf technique (Noble, 1958). We illustrate this by considering the specific case of a three-

dimensional jet-like shear flow interacting with an impermeable flat plate that lies as 0u  , 1 0y   

and suppose for definiteness that the mean velocity, say  U u , vanishes at 0u  and that the distance 

between the nozzle exit and the trailing edge is of the same order as the decay scale of the turbulent 

eddies. The disparate length scales then ensure that the upstream boundary conditions can be imposed 

in a region that is at a finite distance from the  nozzle flow field while still being at an infinite distance 

upstream of the trailing edge on the scale of the interaction.  This region may still be affected by the 

details of the downstream influence of the nozzle exit flow, such as the level and nature of the 

disturbances, as well the initial momentum thickness of the wall shear layers. But these effects are now 

accounted for by specifying the mean velocity profile  U u , the distribution  , ,A u v u v  and structure 

of the upstream turbulence spectrum(4.22). 

 A typical configuration for  which the W z mapping  (A.1) (see figure A.1) applies is shown in figure 3. 
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                                                       Figure 3. Round jet surface interaction  

6.2 The Fourier transformed Green’s function 

We begin by setting  

                        1 1

1 3 1 3, ,
1 2 1 2

| |ˆ : , , , : , , ,   for  0,, ,sik x
G x x k k e G k k ux xu v u v 

                       (6.1)                                   

where the + sign corresponds to the symmetric case and the – sign to the antisymmetric case alluded to 

above, and are unrelated to the   subscript. The functions    1 3,
1 2

| : , ,,s
G k kx xu v  ,  for  0u , 

denote specific homogeneous solutions of the spanwise Fourier transform  of equation (5.3) that  have 

outgoing wave behavior as 2y   , respectively.  

The hydrodynamic component 
   0

1 3,
1 2

| : , ,,G k kx xu v   can be identified with the inhomogeneous 

solution of (5.3)that satisfies the homogeneous boundary condition (5.10) and can, without loss of 

generality, be required to vanish for 2 0ux  so that                                 

                  
       0 0

1 3 2 1 2,
1 2

| : , , 0,   for 0,, | : ,,G k k Gx x u v x k uxu v                                 (6.2) 

Applying the boundary condition(2.8) and the jump conditions(2.10) and using (2.9), (3.4) and (6.1)  now 

leads to the following Wiener Hopf problem for Ĝ
       

                                 1 1

1 3 1 1,
1 2

ˆ 0, | : , , 0,     y 0,
ik ye G v x x k k dk









                                         (6.3) 

 

       

   1 1

1 3 1 3 1 1, ,
1 2 1 2

ˆ ˆ 0, | : , , 0, | : , , 0,    ,
ik ye G v x x k k G v x x k k dk y





 



       
        (6.4) 

and 

   1 1

1 3 1 3 1, ,
1 2 1 2

ˆ ˆ 0, | : , , 0, | : , ,
ik ye G v x x k k G v x x k k dk





 



 
             

         1 1 1 0 0

1 3 1 3 1 12 2
, | , |0 0

1
G : , , G : , , 0,   0 ,

2

ik x y
e k k k k dk yv vx x






        
            (6.5)                

with the notation    being  defined below (2.10)and  1 3,
1 2

ˆ 0, : , ,G v k kx x 


 1 3
0

,
1 2

ˆ : , , /,
u

G k ku v x x u 

   . 

6.3 Low frequency limit 

For reasons given above, we now consider the low frequency limit. It then follows from (5.22) and(6.1)  

that (6.4)will be satisfied if  



 20 
 

                                        1 2 1 3 1 2 1 3, ; , , , ; , ,
s s

A Ax x k k k x x k k k                                                   (6.6)    

and 

                                                                 .a a                                                                        (6.7) 

while inserting (D.3) into (5.22), closing the integration contour in the upper half 1k -plane and using 

Cauchy’s theorem shows that (6.3)  will be satisfied if  (see(6.1)) 

     

                     
       1 1

.
0 1 31 2 1 3 1 2 1 32 / , ,, ; , , , ; , ,

sik x
A k k kx x k k k H x x k k ke                           (6.8)    

and 

                                
     1 1

1 2 1 3 1 2 1 3 ,, ; , , , ; , ,
sik x

A x x k k k H x x k k ke a                                     (6.9)                          

where    
. .1 2 1 3 1 2 1 3,, ; , , , ; , ,H x x k k k H x x k k k     denote analytic functions in the upper half 1k -

plane and  

                                                              0
2 2 2
1 3

2

k k k

 
 

                                                             (6.10) 

 Then  since (Lighthill, 1964)  

                                                               
0

lim 2
inv nu inv

u
n n

e e v
 




 

                                    (6.11) 

inserting (6.6), (6.8) and(5.22) into(6.5) leads to the following standard Weiner Hopf problem  

       1 1 11 1
02 2 2

0 1 3 1 1 32
, |0

1
1 G : , ,

2

ik x yik ye H O k k k dk e k kv x
 



 

 

       
                                                                             

                                           
   0

1 3 1 12
, |0G : , , ,  for 0  and  0k k dk y vv x     


             (6.12) 

which is formally the same as the one given by equations (B2) and (B3) of Goldstein et al (2013a) and it 

therefore follows from equations (B9) and (B12) of that reference and equation (5.20) of the present 

paper that   

  1 3,
1 2

: , ,H k k kx x                                                                     

       
         

  
1

0 0

1 3 1 3 1 3

1

1 3 1 1

1
2 2

| |, , G : , , + G : , ,
1

,
4 , ,0

0, 0,
ik x

k k v k k k k

dk
i k k k k

v x v x
e

  

 

 

 

  
  


              
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 

 

   

1

2 2 2
1 3 22

1 3
2

1 2

1 1 1 3

1
4

2 2 2
1 3

, ,0sgn
,   for  0

, ,02

k k k

ik x

x
k kk x

dk x
i k k k k

e

k k k
e













 



 
  

           (6.13)      

                                                     
where the integration contour must be deformed to lie below the poles of the integrand in order to 

satisfy causality,  1 3, ,k k v denote bounded analytic functions in the upper/lower half 1k  planes that 

satisfy the factorization condition 

                           1 3 1 3 0 1 3
2 2 2
1 3

2
, , , , , ,k k v k k v k k k

k k k
   



   
 

                               (6.14) 

on the real 1k axis with the 1k -integration contour in (6.13) being deformed to pass below the pole at

 /U u
1k .  But this integral can be interpreted as a Cauchy principal value when evaluating the far- 

field behavior of(5.6), since the contribution from  that pole produces a term that behaves like  

 1exp /i x U u     , which produces the non- radiating  hydrodynamic disturbance 
   
0

: ,p Tx at 

subsonic speeds.   

The  2 2 2

1 3O k k k   error term in (6.12) is important because it shows that the error on the left hand 

side is consistent with the right hand side error implied by(5.20).  

Causality considerations (Briggs, 1964 and Bers, 1975) then require that          

 

                           2 2

1 3 1 3 1 3
2 2

1 3

2
, ,0 .., , ,0 +.., k k k k k k k

k k k
  




    

 

                  (6.15) 

where the branch cuts are chosen so that    2 2 2 2 2 2

1 3 1 3arg / 2k k k H k k k        . 

Goldstein et al (2017) found that the lowest-order approximation to the low-frequency Green’s function 
for the planar jet is independent of the mean flow and is therefore equal to low frequency limit of the 
zero-mean-flow Green’s function. The lowest order approximation to the Fourier transformed Green’s 
function (5.22) must also reduce to the zero-mean-flow Green’s function, and therefore to the low 
frequency Green’s function obtained by Goldstein et al (2013a), when the mean flow goes to zero. But 

this can only occur if  a o k 
  and equations(5.6), (5.7), (5.22) and (6.8)therefore show that the 

lowest order approximation to Fourier transform of the scattered component of the Green’s function 
       s s s s
G G G G      is given by 

               3 31 1
1 0 1 2 1 3 3| : , / 2 , : , , ,  for 0,s ik xik x

G k H x x k k k dk ue eu v   







  x            (6.16) 

As in Goldstein et al (2017)  the Green’s function (6.13) ,(6.15) and (6.16) is independent of the mean 

flow and the wall normal coordinate and is therefore the same as the low-frequency  limit of the zero 

mean flow Green’s function which can be calculated by well know classical methods. We expect this 

finding to be quite universal and to apply to all low frequency transversely sheared RDT problems. The 
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present Green’s function also becomes independent of the spanwise coordinate 3y  in the source region 

which is now confined to the spanwise location where  3 1y O .  

6.4 The pressure spectrum 

Inserting (6.13)  into(6.16), using the result into (3.1) and(2.25), changing the integration variables from 

2 3,y y  to ,u v  and noting that the Green’s function is independent of v  shows that                                

                                         
       

0

2, sgn , , , ,
s
p x u u du



    x xR                                            (6.17) 

where we have put                
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2 22
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 







 


      

 x,R                 (6.18) 

                                       
2

1
, , ,

2

dW
u u v dv

dz





 
     

   
                                                        (6.19)  

and  

                                               
2 2 2

3 3 1 1 1 3 2.k x k x k k k x                                                                (6.20) 

6.5 Far field behavior of the low frequency acoustic spectrum  

 Equation (6.20) can be written as  

                                                                          x                                                                                  (6.21) 

   where 

                              
2 2 2

1 1 3 3cos sin sin sin cos ,k i k k k k                                              (6.22) 

2 2 2 2

1 2 3x x x  x and we have introduced the polar coordinate system cos ,sin sin ,x x   

sin cos   with the polar angle   being measured from the downstream direction. 

The integrals in equation(6.18)
 
can be evaluated by sequentially applying the method of stationary 

phase to obtain 
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e  
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

 
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x

x
                (6.23) 

as 2, ,x x where 
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                                               
3 1sin cos ,   cos
s s
k k k k                                                              (6.24) 

denote the stationary phase points, the local Mach number  M u is given by (5.13)and  

                                                                
2 21 sin cos .                                                                     (6.25) 

Using equations (6.17) along with (6.23),(4.21),(6.19) and (6.21) in (4.19)  therefore shows that the far- 

field acoustic spectrum is given in terms of the source spectrum by  
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   (6.26)                                                                                                                               

where  

                                       
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 

 


 

                                                      (6.27) 

and the source spectrum S  is given by (4.21). These results are independent of the actual form of the 

conformal mapping z W and are therefore expected to apply to any sufficiently localized flow 

configuration (such as the multiple jet configuration shown in figure 1) that can be 

conformally mapped into a strip similar to the one shown in figure A.1.  In fact, it can probably be 

extended to zero-surface velocity flows with arbitrary cross section by replacing 
2

/dz dW  with the 

Jacobian    2 3, / ,y y u v  of the transformation of the rectangular 2 3,y y   coordinate system into any 

orthogonal coordinate system for which    TU U uy .  

6.6 Extension to higher frequencies 

The practical utility of the low frequency solution(6.26) and (6.27) can be increased by extending it to 

higher frequencies. To this end  we note that  the Fourier transform of the  1O  frequency zero mean 

flow Green’s function only differs from its low frequency limit by a factor of  2 2 2

1 3 2exp k k k y   ( 

as can easily be seen by replacing the outgoing wave solution  2 1 2 1 3, : , ,P y x x k k
in the Wiener-

Hopf solution (6.13), (6.15)and (6.16) with the zero mean flow outgoing wave solution

 2 2 2

1 3 2exp k k k y   ).  We therefore expect that (6.26) will perform better at higher frequencies if 

we replace (6.27)with  

                                    
2 2

, , , , , : ,
dz dz

S u u Q u v Q u v S u u v v dvdv
dW dW

 

 


 
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where 
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and  
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7. Numerical results 
Measurements of the noise generated by the interaction of a circular jet with the trailing edge of a flat-

plate were carried out by Brown (2013, 2015a, b) in the Small Hot Jet Acoustic Rig (SHJAR) at the Aero-

Acoustic Propulsion Laboratory (AAPL) at NASA Glenn Research Center (Bridges and Brown, 2005; Brown 

and Bridges, 2006). The experimental configuration along with the relevant geometric parameters are 

shown in figure 4. Our interest here  in comparing the present analysis with these measurements and it 

seems reasonable to assume that the mean surface velocity is zero and this setup, so that , as indicated 

above, the model problem considered in Sections 7and 8 can be used to represent this  interaction. The 

analysis is basically inviscid but  accounts for viscous effects by imposing a Kutta (or minimum 

singularity) condition at the trailing edge (Goldstein et al,2013). Similar but more complicated analyses 

would be required to deal with the case where the mean surface velocity is non-zero.  

                                         

Figure 4 – Experimental configuration. From Brown (2013), used with permission’ 

 

It is also reasonable to suppose that the constant velocity surfaces can be represented by the conformal 

mapping (A.1) for a single jet configuration of this type.  And we assume in the calculations that the 

mean density  is constant and the mean velocity profile  2 3,U y y  can be represented by a symmetric 

function of the form  

                                                           
2 4

11 ,d

u u
U u U e

 
 

 
                                                             (7.1) 

where   and 1  are constants. And since the amplitude factor  , ,A u v u v   in (4.22)  must vanish at 

the jet boundaries and is determined by strength of the turbulence at the source location, we expect it 

to be proportional to the turbulence intensity at ,u vwhich is roughly proportional to the mean velocity 

gradient at that point. We therefore set              
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                 
5

0 0 0
, , / / / /   .

v v
A u v u v A u u A uu dU du dU du dW dz dW dz

 
             (7.2)   

 

where 0A  is a positive constant. Jet flow measurements suggest that is also reasonable to choose the 

arbitrary function  2 2 3 3/ , /f l l    in the velocity correlation model (5.7) to be  

 2 2 3 3 2 2 3 3/ , / / /f l l l l      , where, 2l  and 3l   dente constant the length scales.  

Brown (2013, 2015a, b) considered many  combinations of the axial and radial locations of the plate 

trailing edge relative to the nozzle exit and a wide range of jet flow conditions. Their nozzle diameter 

jD  was approximately equal to two inches and noise measurements were made on both the shielded 

and reflected observer locations (see Figure 4). We decided to use the unheated jet results for the three 

jet exit acoustic Mach numbers 0.5,0.7,0.9aM  and  selected  the configuration where the plate was 

located at one nozzle diameter from the jet centerline and the trailing edge was located six diameters 

downstream of the nozzle exit as an initial test case for the theory, since this configuration resulted in 

some of the highest levels of trailing-edge noise observed in the experiments. The scale factorh , which 

was taken to be the distance between the nozzle centerline and the plate, was equal to the nozzle 

diameter jD  in this case.  

The numerical results were computed from the formula (6.26)for the acoustic spectrum, with S  

determined from (8.55) – (8.57) and (A.5), and S given by the source model (5.8). The u and u  

integrations were carried out by using Simpsons rule, truncating the lower limits at ‘large’ but finite 

negative values of these quantities and  using the fact that the integrands vanish at , 0u u  . The lower 

limits of the integrations were set equal to -2.0 in the calculations shown in the figures. The u -integrals 

were computed with 100 mesh points while 128 points were used to evaluate the v -integrals, which 

were also computed from Simpson’s rule.  Numerical testing was carried out to ensure that these 

integration parameter values were sufficient to produce results that differed by less than hundredths of 

a dB.                                                                                                                                                                                                                                                                                                                                                                                                                                           

The mean velocity parameters   and  1  were both set equal to 0.5 in the computations and the 

resulting profile shape is shown in figure 5.  
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a)                                                                                                                        b) 

Figure 5. Normalized mean velocity profiles calculated from (7.1) with 1 0.5   , a) altitude plot, b) 

profile shape at 3 0y   .  

Figure 6 is contour plot of the amplitude function(7.2) used in the computation. It clearly shows that the 

turbulence level vanishes at the edge of the jet and that its maximum intensity roughly coincides with 

the region of maximum shear. 

                             

                          Figure 6 Contour plot of amplitude function (7.2) with 0 0.035A    
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Figures 7 through 9 are quantitative comparisons of the  measurements of Brown (2013, 2015a, b) with 

theoretical predictions obtained from composite RDT solution(6.26),(6.28) and (6.29). Results for the 

power spectral density of the far-field pressure fluctuation vs. Strouhal number, St / Jf h U  , in dB 

scale 210log(4 / )J refPSD I U h p   (referenced to 20refp pa  ) are shown at several polar angles 

measured from the downstream jet axis. The experimental trailing-edge noise was educed by 

subtracting the noise measured in the corresponding free jet (i.e., in the absence of a plate) from the 

total measured noise. The remaining parameters used in the predictions shown in the figures are

0 2 32.8, 2.13  and  0.75l l   .  

 

     

      

Figure 7 – Comparisons of noise predictions using the composite RDT solution (8.53) and (8.55) – (8.57) 

(solid lines) with experimental data. Ma = 0.5.  
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Figure 8- Comparisons of noise predictions using the composite RDT solution (8.53) and (8.55) – (8.57) 

with experimental data. Ma = 0.7.  
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Figure 9 - Comparisons of noise predictions using the composite RDT solution (8.53) and (8.55) – (8.57) 

(solid lines)with experimental data. Ma = 0.9. 

These  comparisons show that the theoretical predictions are in reasonable agreement with the data—

especially at frequencies near and below the spectral peaks —and that the experimental results are well 

captured  at all Mach numbers considered. The zero-mean flow-based high-frequency correction 

reduces the spectral levels at frequencies beyond the peak and causes the slope of the roll-off to more 

closely follow the data. But the accuracy of the predictions is relatively unimportant in this region, since 

the edge noise is well below the jet noise at these frequencies.  The agreement seems to be worse at 

the highest Mach number (Ma = 0.9) shown in the figures, but there is significant scatter in the data for 

this case, which may be due to the difficulty in extracting the edge noise at this higher Mach number, 

where the jet noise starts to become comparable to the trailing-edge noise  -- even at the lower 

frequencies.  

The accuracy of the predictions in Figures 7-9 at frequencies near and below the spectral peaks is 

comparable to that obtained by Goldstein et al (2017) for the case of a planar jet. Differences can  

perhaps be attributed to uncertainty in the source parameter values and more scatter in the extracted 

experimental edge-noise data in the present round jet case.    

The numerical results in Figures 7-9, along with our previous results for a planar jet (Goldstein et al 

2017), show that the RDT can be used to predict the noise generated by the interaction of a turbulent 

jet with the trailing-edge of a flat plate. This flow configuration models the situation encountered when 

a jet engine is tightly integrated into an airframe (as illustrated in Figure 1) and the relatively simple 

formula for the acoustic spectrum allows a quick assessment of the additional noise generated  by the–

surface interaction.  

8. Concluding Remarks 

This paper is based on the formal solutions (2.4) and (2.11)-(2.14) to the linearized Euler equations (2.2)
and (2.3) for transversely sheared mean flows which, like the classical  Kovasznay (1953) result for the 

unsteady motion on uniform flows, involve two arbitrary convected quantities  1 ,/ Ty U  y and
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 1 ,/c Ty U  y , that can be associated with the hydrodynamic  component of the flow and  can, 

therefore, be used to specify  upstream  boundary (i.e., initial) conditions for RDT problems that involve 
the interaction of turbulence with solid surfaces. The results were applied to the specific case of a round 
jet interacting with the trailing edge of a flat plate and an explicit low frequency solution was obtained. 
The low-frequency Green’s function that appears in this result is independent of the mean flow  when 

evaluated in terms of the streamwise wave number 1k  just as it was for the two dimensional mean flow 

considered in Goldstein et al (2017).  This means that these low frequency Green’s functions are the same 
as the low frequency limit of the zero-mean flow Green’s function which can usually be found by using 
well known standard techniques (Noble, 1958). This finding appears to be quite generic and probably 
applies to many transversely sheared RDT problems. The final formula (6.26) turns out to be independent 

of the actual form of the conformal mapping z W and can probably be extended to any sufficiently 

localized flow (such as the multiple jet configuration shown in figure 1) by replacing 
2

/dz dW  with the 

Jacobian    2 3, / ,y y u v   of an appropriate mapping .  

Appendix A. Conformal mapping  

 The specific realization  

                                                                   ln
z i

W
z i





                                                                                (A.1) 

of the transform(5.1),(5.2) that maps the strip v    , u   into the entire z   plane can 

be inverted to obtain   
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1 2
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
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
                                                                      (A.2)     

And it follows from Abramowitz and Stegun (1964, p85, # 4.5.67) that  
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and therefore that  

                                                           13
3

3

ln 2 tan 1/
y i

iv i y
y i


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
                                                        (A.6) 

when 0u  ,which shows that 0v as 3y   and v   as 3 0y   on the plate surface.  

Equation(A.1) implies that  

                                             
22 / 2 / ,   as  TW i z iz y z                                                               (A.7) 

and  
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2 2

2 3/ / 2   / / 2   as 0u W y v W y W                                             (A.8) 

which shows that 

                                             
2 30,  fixed implies   0   fixed u v y y                                                     (A.9) 

and  

                                                      31  implies  1v O y                                                                            (A.10) 

where 

                                          3 2,   cos ,  sinT T Ty z y y y y                                                               (A.11) 

 

This behavior is consistent with the contour plots shown in figures A1 and A2.  

 

                                                       

                                                 Figure A.1. Level surfaces for the Mapping (A.1) 

                                                

                                                     Figure A.2. W-plane for the Mapping (A.1)         

Appendix B. Modelling of physically realizable source spectra  
The cross correlation 
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       1 1, : / , / ,T T T T T Ty U y U        y y y y y yU U  

                                                 1 1/ /T T T Ty U y U        , y y y , yU U                  (B.1)  

of   1 / ,T Ty U  y yU will exist and be independent of   when U  is a stationary function of   

and hence also of   1 / Ty U  y (Wiener, 1938).  It therefore follows that 
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      y y y y   (B.2) 

so that the cross correlation  , :T T y y   of the upstream normal velocity derivative fluctuation needs 

to be specified before the source spectrum (4.21)and therefore pressure spectrum (4.19) can actually be 

calculated.  We are unaware of any actual measurements of this quantity, but it is well known the 

transverse velocity correlation        1 2 3 2 3, , / ,Tv v y y y U U y y   
  y, , y , which has been 

extensively measured, can be well represented by the exponential form  
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=  TA y     

2 22

1 1 0 3 3 3exp / / /cy y U y y l               (B.3) 

 where 3l  is a constant and cU  denotes an empirically determined constant convection velocity. This is 

consistent with Taylor’s hypothesis (Taylor, 1938) which assumes that the changes in v  at a fixed point 

are due to an unchanging pattern of turbulent motion over that point  and can be formulated as 

   1 1, ,cv y v y U       (Townsend, 1976).  Dennis and Nickels (2008) show that the optimal 

approximation is obtained when cU is set equal to the local mean velocity  U y  (which is equal to

 TU y  for transversely sheared mean flows). But Taylor’s hypothesis is an approximation which, as 

shown by Lin (1953) is only valid  when the turbulence level is low, viscous effects are negligible and the 

mean shear is small. The first two conditions are also required for the validity of Rapid Distortion Theory 

but  the third is definitely not.    

The important point is that (B.3) is consistent with the requirements of  transversely sheared mean flow 

RDT when cU is set equal to  2U y . But  this consistency also requires (see equation(B.1)) that the fully 

three-dimensional correlation        , , / T Tv t v t U U 
  y y y y  be represented by the 

exponential form         
22 2

2 2 3 3 1 1 0, exp , / / / ,T TA f l l y U u y U u            y y   

where 0 2 3, ,l l are constants,                                                                        
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                                                                 2 3,    u u v v                                                               (B.4) 

and    2 2 3 3, , ,T TA f l l y y are, yet, unspecified functions of the indicated arguments, rather than 

by the commonly used form       
22 2

2 2 3 3 1 1 0exp , / /T cA f l l y y U            y                          

- a result that would certainly be worth checking experimentally.  

It is therefore seems appropriate to represent     , :T T  y y    
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                        
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where   the amplitude  ,T TA y y is expected to vanish as 0,T T  y , y . 

And since 
2c  is constant in transversely sheared flows, inserting this into (B.2) inserting the result into 

(4.21)and using equation (27) of Leib & Goldstein (2011) shows that (4.22) provides an appropriate 

model for the source function  S  (Campbell and Foster, 1948) 

 Appendix C. The gust component of the low frequency Green’s function 

The spanwise Fourier transform  
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of the gust component of the streamwise Fourier transform    0

1; ,T TG k y x of the reduced Green’s 

function  1; ,TG k y x is expected to be independent of 3y  and therefore determined by 
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
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in the outer region where  2 2 2 2

1 1, 1T Tk k y k k x O     when    0

1; ,T TG k y x depends on 

3 3,x y  only in the combination 3 3x y  (which we will show to be the case in the low frequency limit) 

and is therefore given by (Goldstein 1976, p.282)                             
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                                  (C.3)  

for 2 2x y , whereH  denotes the Heaviside function  
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                                       
2 2 2 2 2 2
1 3 1 32 2

2 2 3 1, , ,
k k k k k ky y

w y k k e be     
                                            (C.4) 

b Is an  1O  constant and it follows from Abel’s theorem that 

                                                    
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For simplicity, we only consider the symmetric case (which is usually the case of principal interest). The 

outer solution    0

1 32
|
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2 1 32 3 2 3 |, , , : , ,xG u y y v y y k k see (5.8)) must then behave like 
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since equations(C.3)-(C.5)show that 
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And it, therefore, follows that the inner limit of the outer symmetric part of the Fourier-transformed 
Green's function is 
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        (C.8) 

This result will satisfy the wall boundary condition in the outer region where  3 3 1k y O  if we set 1b  . 

When Ty is in the inner region and Tx is in the outer region equations(5.11) and (5.12) possess a solution of 

the form 
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| |
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
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which is symmetric in 3k  satisfies the spanwise transform of the zero derivative wall boundary 

condition and will match onto the outer solution (C.6)to within an error of  2 2 2

1 3O k k k  in the 

overlap domain where
2 2 2

2 1 3 3 3, 0, ,  0u v y k k k k y    if we set 1b   and 
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                                         (C.10)  

The lowest-order inner solution for the Fourier transformed Green’s function that satisfies the wall 

boundary condition (2.8) for all values of 3y and is therefore given by(5.20). 

 Appendix D The scattered component of the low frequency Fourier transformed 

Green’s   function 

Equations(5.7),(5.8), (6.1) and (5.15)-(5.17) show that the inner solution for the  Fourier transform 

   1 3,
1 2

| : , ,,s
G k kx xu v  of the scattered component of the Green’s function must be of the form  
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  where     

                                              
 

 

2

1

2
0

0 0 1

/ 1
.ˆ

u M u k k
du

c u
P u c c


      

                                                       (D.2) 

and  1
ˆ : ,nP u k
  for 1, 2,....n    denote specific solutions of(5.16) and (5.17)that behave like  

                                         1 3
ˆ : , ,   as  0

n u

nP u k k e u
                                                              (D.3) 

And in order to insure that 
 s
G behaves like the Fourier transform of the zero mean flow flat plate 

Green’s function in the outer region where  3 3 2, 1k y y O  we require that the inner solution (D.1) 

match onto the outgoing wave outer solution 
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is an outgoing wave solution of the Helmholtz equation (see (5.19))   

                                                          1 3
ˆ : , , 0TP k k
  yL                                                                  (D.6) 

in the outer region where  2 2 2
1 3 2 3 3, 1k k k y k y O   . The  sign in the exponent comes from the 

requirement that this solution have outgoing wave behavior as 2y  .  

An appropriate choice for  1
ˆ : ,TP k
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where 
 1

H denotes the Bessel function of the first kind  and  1 3, ,a k k k  is a function of the indicated 

arguments.  

It now follows from(D.2), (A.2) and #9.1.8 on p.360 of Abramowitz and Stegun (1964) that the inner limit 

of the outer solution (D.5) is 
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as 2 2 2

1 3 2 3 3,  0k k k y k y   .  And since it follows from (D.1)-(D.3) that the inner solution behaves 

like 
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as , 0u v , the inner and outer expansions will only match if 
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               2 2 2
1 30
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It then follows from (D.1) and (D.2)that the Fourier transform of the scattered component of the 

Green’s function is of the form (5.22) .       
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