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Autophagy functions in part as an important host defense 
mechanism to engulf and degrade intracellular pathogens, a process 
that has been termed xenophagy. Xenophagy is detrimental to the 
invading microbe in terms of replication and pathogenesis and 
many pathogens either dampen the autophagic response, or utilize 
the pathway to enhance their life cycle. Herpes simplex virus type 
1 (HSV-1) counteracts the induction of xenophagy through its 
neurovirulence protein, ICP34.5. ICP34.5 binds protein phospha-
tase 1a to counter PKR-mediated phosphorylation of eIF2a, and 
also binds the autophagy-promoting protein Beclin 1. Through 
these interactions, ICP34.5 prevents translational arrest and down-
regulates the formation of autophagosomes. Whereas autophagy 
antagonism promotes neurovirulence, it has no impact on the repli-
cation of HSV-1 in permissive cultured cells. As discussed in this 
article, this work raises a number of questions as to the mechanism 
of ICP34.5-mediated inhibition of autophagy, as well as to the role 
of autophagy antagonism in the lifecycle of HSV-1.

Autophagy, or perhaps more correctly a specific type of autophagy 
termed xenophagy,1 is an important host defense mechanism against 
a number of chronic intracellular pathogens.2‑15 Typical of many 
microbial countermeasures against innate immunity, recent work has 
shown that autophagy is either inhibited by the invading pathogen, 
or exploited to actually enhance its replication cycle. The processes 
of autophagy and xenophagy and their alteration by microbes 
is, therefore, a newly‑discovered pivotal aspect of the fascinating 
cat‑and‑mouse game of microbial pathogenesis and host‑pathogen 
interactions.

One well‑studied example of a xenophagy‑altering factor is 
the herpes simplex virus type‑1 (HSV‑1) neurovirulence protein, 
ICP34.5 (Fig. 1). For some years ICP34.5 was known to counteract 
the host innate immune response mediated by PKR by directing the 
dephosphorylation of the translation initiation factor eIF2a through 

its ability to bind protein phosphatase 1a (PP1a).16,17 This was 
shown to counter the translational arrest concomitant with PKR 
activation and eIF2a phosphorylation, thereby promoting viral 
replication and virulence. Recent data, however, consistent with 
autophagy being an eIF2a‑ and PKR‑dependent pathway, shows 
that ICP34.5 antagonizes induction of xenophagy following HSV‑1 
infection.13‑15 It was originally thought that ICP34.5 controlled 
xenophagy solely through its ability to bind PP1a, but it was further 
discovered that a 20 amino acid stretch of ICP34.5 is responsible 
for its binding to Beclin 1, a protein required for autophagosome 
formation.13 An HSV‑1 recombinant lacking these 20 amino acids of 
ICP34.5 is severely neuroattenuated and fails to inhibit xenophagy, 
demonstrating that the interaction between ICP34.5 and Beclin 1 is 
required for full HSV‑1 neurovirulence.

These findings raised a number of questions. First, are the severe 
replication defects in vitro and in vivo of ICP34.5‑null viruses due to 
their inability to counteract autophagy, or their inability to dephos‑
phorylate eIF2a and prevent the subsequent shutoff of protein 
synthesis? Second, what are the relative roles of the ICP34.5 Beclin 
1‑ or PP1a‑binding domains in the control of xenophagy? Finally, 
are other HSV‑1 proteins involved in the regulation of xenophagy?

To answer the first question, we utilized primary atg5‑/‑ murine 
embryonic fibroblasts (MEFs) which are unable to undergo 
autophagy18,19 in conjunction with an ICP34.5‑deficient virus.20 
This virus has a severe replication defect in primary wild‑type MEFs 
that is completely restored in pkr‑/‑ MEFs.15 We hypothesized that 
the inability to control autophagy may contribute to the severe 
replication defect of an ICP34.5‑null virus in wild‑type MEFs and 
expected to observe partial restoration of replication in autophagy 
defective MEFs. Surprisingly, the replication of this ICP34.5‑null 
virus was unchanged in atg5‑/‑ MEFs suggesting that an inability to 
control xenophagy does not affect virus replication in cultured cells. 
In further support of these data, the Beclin 1 binding mutant and 
control wild‑type viruses grew comparably in wild‑type MEFs. These 
data are consistent with the idea that counteracting translational 
shutoff via regulation of the PKR pathway is the primary role for 
ICP34.5 in mediating efficient viral replication in vitro. This raises 
yet another question. Why is the inability to control xenophagy so 
important for replication in vivo, especially in the brain? The answer 
may lie in inherent differences between primary cultured cells and 
cells in vivo. Alternatively, xenophagy may be a more potent and  
critical anti‑viral pathway in certain cell types, providing the 
host with a distinct advantage of having a relatively selective and 
non‑destructive way to clear intracellular pathogens. This may be 
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especially important in organs such as the brain where cells are largely 
post‑mitotic, and cytokine‑ and inflammatory cell‑mediated damage 
would have an irreversible, devastating outcome. In support of this 
hypothesis, the Beclin 1 binding domain mutant was neuroattenu‑
ated and unable to efficiently replicate in the brains of mice. From 
the teleological perspective of the pathogen, therefore, control of 
autophagy may be more critical for growth in tissues with high 
constitutive autophagy levels.21

To answer the second question regarding the relative roles of 
Beclin 1‑ and PP1a‑binding in ICP34.5‑mediated control of 
xenophagy, we generated an ICP34.5 mutant that lacks the PP1a 
binding domain, but its Beclin 1‑binding domain remains intact. By 
comparing the phenotypes of the ICP34.5 Beclin 1 binding mutant, 
the PP1a binding mutant, and that of a null mutant we are deter‑
mining the roles of these domains in viral replication, pathogenesis, 
and control of xenophagy. Finally, we think it is likely that another 
HSV‑1 protein, US11, contributes to the control of xenophagy. 
US11 blocks the activity and/or activation of PKR mediated by 
dsRNA or PACT.22,23 Since autophagy is PKR‑dependent, US11 
likely acts in concert with ICP34.5 to control autophagy through 
counteracting the PKR pathway. As opposed to HSV‑1 strains which 
lack ICP34.5, US11‑null viruses grow normally in vitro and are 
slightly attenuated in vivo.24‑26 These small phenotypes may be due 
to compensation by the dominant effect of extant ICP34.5. We have 
therefore generated an HSV‑1 double mutant that is unable to bind 
Beclin 1 and lacks US11and are determining whether US11 contrib‑
utes to control of xenophagy.

It is clear that our understanding of the interrelationship between 
viruses and the autophagy pathway is in its infancy, but given the 
broad impact of xenophagy on many viruses, and their intricate 
subversive countermeasures, it seems likely that a wealth of infor‑
mation is likely to emerge in the coming years.27 It is also possible 
that a better understanding of these pathways could lead to a whole 
new class of antiviral therapies, designed to augment the xenophagic 

degradation of otherwise hard‑to‑treat intracellular pathogens, or to 
deny certain pathogens access to the autophagic machinery which 
serves to promote their replication and disease.
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