243 research outputs found

    Role of non-coding RNAs in the transgenerational epigenetic transmission of the effects of reprotoxicants

    Get PDF
    13 p.-1 fig.Non-coding RNAs (ncRNAs) are regulatory elements of gene expression and chromatin structure. Both long and small ncRNAs can also act as inductors and targets of epigenetic programs. Epigenetic patterns can be transmitted from one cell to the daughter cell, but, importantly, also through generations. Diversity of ncRNAs is emerging with new and surprising roles. Functional interactions among ncRNAs and between specific ncRNAs and structural elements of the chromatin are drawing a complex landscape. In this scenario, epigenetic changes induced by environmental stressors, including reprotoxicants, can explain some transgenerationally-transmitted phenotypes in non-Mendelian ways. In this review, we analyze mechanisms of action of reprotoxicants upon different types of ncRNAs and epigenetic modifications causing transgenerationally transmitted characters through germ cells but affecting germ cells and reproductive systems. A functional model of epigenetic mechanisms of transgenerational transmission ncRNAs-mediated is also proposed.This work was supported by grant from MINECO (BFU2013-42164-R), Spain.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail

    Get PDF
    29 p.-2 fig.Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells.Del Mazo lab was supported by a grant from MINECO (BFU2013-42164-R), Spain.Peer reviewe

    Evaluation of two different Cannabis sativa extracts as antioxidant and neuroprotective agents

    Get PDF
    Cannabis sativa L. is a plant that contains numerous chemically active compounds including cannabinoids such as trans-Δ-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and flavone derivatives, such as luteolin-7-O-glucuronide and apigenin glucuronide. In particular, the polar fraction of hemp including many phenolic compounds has been overlooked when compared with the more lipophilic fraction containing cannabinoids. Therefore, the aim of this study was to assess two extracts of industrial hemp (C. sativa) of different polarity (aqueous and hexane) by evaluating their antioxidant profile and their neuroprotective potential on pharmacological targets in the central nervous system (CNS). Several assays on in vitro antioxidant capacity (DPPH, superoxide radical, FRAP, ORAC), as well as inhibition of physiological enzymes such as acetylcholinesterase (AChE) and monoaminooxidase A (MAO-A) were carried out in order to find out how these extracts may be helpful to prevent neurodegenerative disorders. Neuro-2a cell line was selected to test the cytotoxic and neuroprotective potential of these extracts. Both extracts showed striking antioxidant capacity in the FRAP and ORAC assays, particularly the hexane extract, and interesting results for the DPPH and superoxide radical uptake assays, with the aqueous extract standing out especially in the latter. In enzyme inhibition assays, the aqueous extract showed AChE and MAO-A inhibitory activity, while the hexane extract only reached IC50 value for AChE inhibitory bioassay. Neuro-2a assays demonstrated that polyphenolic extract was not cytotoxic and exhibited cytoprotective properties against hydrogen peroxide and antioxidant response decreasing reactive oxygen species (ROS) production. These extracts could be a source of compounds with potential benefit on human health, especially related to neurodegenerative disorders

    Generating Time-Varying Road Network Data Using Sparse Trajectories

    Get PDF
    While research on time-varying graphs has attracted recent attention, the research community has limited or no access to real datasets to develop effective algorithms and systems. Using noisy and sparse GPS traces from vehicles, we develop a time-varying road network data set where edge weights differ over time. We present our methodology and share this dataset, along with a graph manipulation tool. We estimate the traffic conditions using the sparse GPS data available by characterizing the sparsity issues and assessing the properties of travel sequence data frequency domain. We develop interpolation methods to complete the sparse data into a complete graph dataset with realistic time-varying edge values. We evaluate the performance of time-varying and static shortest path solutions over the generated dynamic road network. The shortest paths using the dynamic graph produce very different results than the static version. We provide an independent Java API and a graph database to analyze and manipulate the generated time-varying graph data easily, not requiring any knowledge about the inners of the graph database system. We expect our solution to support researchers to pursue problems of time-varying graphs in terms of theoretical, algorithmic, and systems aspects. The data and Java API are available at: http://elif.eser.bilkent.edu.tr/roadnetwork. © 2016 IEEE

    LungBEAM: A prospective multicenter study to monitor stage IV NSCLC patients with EGFR mutations using BEAMing technology

    Get PDF
    Objectives: The aim of LungBEAM was to determine the value of a novel epidermal growth factor receptor (EGFR) mutation test in blood based on BEAMing technology to predict disease progression in advanced non-small cell lung cancer (NSCLC) patients treated with first- or second-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Another goal was to monitor the dynamics of EGFR mutations, as well as to track EGFR exon 20 p.T790M (p.T790M) resistance during treatment, as critical indicators of therapeutic efficacy and patient survival. Methods: Stage IV NSCLC patients with locally confirmed EGFR-TKI sensitizing mutations (ex19del and/or L858R) in biopsy tissue who were candidates to receive first- or second-generation EGFR-TKI as first-line therapy were included. Plasma samples were obtained at baseline and every 4 weeks during treatment until a progression-free survival (PFS) event or until study completion (72-week follow-up). The mutant allele fraction (MAF) was determined for each identified mutation using BEAMing. Results: A total of 68 of the 110 (61.8%) patients experienced a PFS event. Twenty-six patients (23.6%) presented with an emergent p.T790M mutation in plasma at some point during follow-up, preceding radiologic progression with a median of 76 (interquartile ratio: 54–111) days. Disease progression correlated with the appearance of p.T790M in plasma with a hazard ratio (HR) of 1.94 (95% confidence interval [CI], 1.48–2.54; p < 0.001). The HR for progression in patients showing increasing plasma sensitizing mutation levels (positive MAF slope) versus patients showing either decreasing or unchanged plasma mutation levels (negative or null MAF slopes) was 3.85 (95% CI, 2.01–7.36; p < 0.001). Conclusion: Detection and quantification of EGFR mutations in circulating tumor DNA using the highly sensitive BEAMing method should greatly assist in optimizing treatment decisions for advanced NSCLC patients. © 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd

    SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications

    Get PDF
    Vitamin D analogues with reduced hypercalcemic activity are under clinical investigation for use against colon cancer and other neoplasias. However, only a subset of patients responds to this therapy, most probably due to loss of vitamin D receptor (VDR) expression during tumour progression. Recent data show that SNAIL transcription factor represses VDR expression, and thus abolishes the antiproliferative and prodifferentiation effects of VDR ligands in cultured cancer cells and their antitumour action in xenografted mice. Accordingly, upregulation of SNAIL in human colon tumours associates with downregulation of VDR. These findings suggest that SNAIL may be associated with loss of responsiveness to vitamin D analogues and may thus be used as an indicator of patients who are unlikely to respond to this therapy

    The Candida albicans Ku70 Modulates Telomere Length and Structure by Regulating Both Telomerase and Recombination

    Get PDF
    The heterodimeric Ku complex has been shown to participate in DNA repair and telomere regulation in a variety of organisms. Here we report a detailed characterization of the function of Ku70 in the diploid fungal pathogen Candida albicans. Both ku70 heterozygous and homozygous deletion mutants have a wild-type colony and cellular morphology, and are not sensitive to MMS or UV light. Interestingly, we observed complex effects of KU70 gene dosage on telomere lengths, with the KU70/ku70 heterozygotes exhibiting slightly shorter telomeres, and the ku70 null strain exhibiting long and heterogeneous telomeres. Analysis of combination mutants suggests that the telomere elongation in the ku70 null mutant is due mostly to unregulated telomerase action. In addition, elevated levels of extrachromosomal telomeric circles were detected in the null mutant, consistent with activation of aberrant telomeric recombination. Altogether, our observations point to multiple mechanisms of the Ku complex in telomerase regulation and telomere protection in C. albicans, and reveal interesting similarities and differences in the mechanisms of the Ku complex in disparate systems

    Prospective Exploratory Analysis of Angiogenic Biomarkers in Peripheral Blood in Advanced NSCLC Patients Treated With Bevacizumab Plus Chemotherapy: The ANGIOMET Study

    Get PDF
    Finding angiogenic prognostic markers in advanced non-small-cell lung cancer is still an unmet medical need. We explored a set of genetic variants in the VEGF-pathway as potential biomarkers to predict clinical outcomes of patients with non-small-cell lung cancer treated with chemotherapy plus bevacizumab. We prospectively analyzed the relationship between VEGF-pathway components with both pathological and prognostic variables in response to chemotherapy plus bevacizumab in 168 patients with non-squamous non-small-cell lung cancer. Circulating levels of VEGF and VEGFR2 and expression of specific endothelial surface markers and single-nucleotide polymorphisms in VEGF-pathway genes were analyzed. The primary clinical endpoint was progression-free survival. Secondary endpoints included overall survival and objective tumor response. VEGFR-1 rs9582036 variants AA/AC were associated with increased progression-free survival (p = 0.012 and p = 0.035, respectively), and with improved overall survival (p = 0.019) with respect to CC allele. Patients with VEGF-A rs3025039 harboring allele TT had also reduced mortality risk (p = 0.049) compared with the CC allele. The VEGF-A rs833061 variant was found to be related with response to treatment, with 61.1% of patients harboring the CC allele achieving partial treatment response. High pre-treatment circulating levels of VEGF-A were associated with shorter progression-free survival (p = 0.036). In conclusion, in this prospective study, genetic variants in VEGFR-1 and VEGF-A and plasma levels of VEGF-A were associated with clinical benefit, progression-free survival, or overall survival in a cohort of advanced non-squamous non-small-cell lung cancer patients receiving chemotherapy plus antiangiogenic therapy. © Copyright © 2021 Jantus-Lewintre, Massutí Sureda, González Larriba, Rodríguez-Abreu, Juan, Blasco, Dómine, Provencio Pulla, Garde, Álvarez, Maestu, Pérez de Carrión, Artal, Rolfo, de Castro, Guillot, Oramas, de las Peñas, Ferrera, Martínez, Serra, Rosell and Camps
    corecore