186 research outputs found

    Galactic Twins of the Ring Nebula Around SN1987A and a Possible LBV-like Phase for Sk-69 202

    Get PDF
    Some core-collapse supernovae show clear signs of interaction with dense circumstellar material that often appears to be non-spherical. Circumstellar nebulae around supernova progenitors provide clues to the origin of that asymmetry in immediate pre-supernova evolution. Here I discuss outstanding questions about the formation of the ring nebula around SN1987A and some implications of similar ring nebulae around Galactic B supergiants. Several clues hint that SN1987A's nebula may have been ejected in an LBV-like event, rather than through interacting winds in a transition from a red supergiant to a blue supergiant.Comment: 2 pages, to appear in procedings of "Massive stars: fundamental parameters and circumstellar interactions", conference in honor of Virpi Niemela's 70th birthda

    NGC 602 Environment, Kinematics and Origins

    Full text link
    The young star cluster NGC 602 and its associated HII region, N90, formed in a relatively isolated and diffuse environment in the Wing of the Small Magellanic Cloud. Its isolation from other regions of massive star formation and the relatively simple surrounding HI shell structure allows us to constrain the processes that may have led to its formation and to study conditions leading to massive star formation. We use images from Hubble Space Telescope and high resolution echelle spectrographic data from the Anglo-Australian Telescope along with 21-cm neutral hydrogen (HI) spectrum survey data and the shell catalogue derived from it to establish a likely evolutionary scenario leading to the formation of NGC 602. We identify a distinct HI cloud component that is likely the progenitor cloud of the cluster and HII region which probably formed in blister fashion from the cloud's periphery. We also find that the past interaction of HI shells can explain the current location and radial velocity of the nebula. The surrounding Interstellar Medium is diffuse and dust-poor as demonstrated by a low visual optical depth throughout the nebula and an average HI density of the progenitor cloud estimated at 1 cm^-3. These conditions suggest that the NGC 602 star formation event was produced by compression and turbulence associated with HI shell interactions. It therefore represents a single star forming event in a low gas density region.Comment: Accepted for publication in PASP. 25 pages, 10 figure

    Jets and the shaping of the giant bipolar envelope of the planetary nebula KjPn 8

    Get PDF
    A hydrodynamic model involving cooling gas in the stagnation region of a collimated outflow is proposed for the formation of the giant parsec-scale bipolar envelope that surrounds the planetary nebula KjPn 8. Analytical calculations and numerical simulations are presented to evaluate the model. The envelope is considered to consist mainly of environmental gas swept-up by shocks driven by an episodic, collimated, bipolar outflow. In this model, which we call the ``free stagnation knot'' mechanism, the swept-up ambient gas located in the stagnation region of the bow-shock cools to produce a high density knot. This knot moves along with the bow-shock. When the central outflow ceases, pressurization of the interior of the envelope stops and its expansion slows down. The stagnation knot, however, has sufficient momentum to propagate freely further along the axis, producing a distinct nose at the end of the lobe. The model is found to successfully reproduce the peculiar shape and global kinematics of the giant bipolar envelope of KjPn 8.Comment: 20 pages + 8 figures (in 1 tar-file 0.67 Mb

    Supernova Remnants in the Magellanic Clouds III: An X-ray Atlas of LMC Supernova Remnants

    Full text link
    We have used archival ROSAT data to present X-ray images of thirty-one supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). We have classified these remnants according to their X-ray morphologies, into the categories of Shell-Type, Diffuse Face, Centrally Brightened, Point-Source Dominated, and Irregular. We suggest possible causes of the X-ray emission for each category, and for individual features of some of the SNRs.Comment: 27 pages, 6 figures (9 figure files). To appear in the Supplement Series of the Astrophysical Journal, August 1999 Vol. 123 #

    Results of the ESO-SEST Key Programme on CO in the Magellanic Clouds. IX. The giant LMC HII region complex N11

    Get PDF
    We present maps and a catalogue containing the J=1-0 12CO parameters of 29 individual molecular clouds in the second-brightest LMC star formation complex, N11. In the southwestern part of N11, molecular clouds occur in a ring or shell surrounding the major OB star association LH9. In the northeastern part, a chain of molecular clouds delineates the rim of one of the so-called supergiant shells in the LMC. The well-defined clouds have dimensions close to those of the survey beam (diameters of 25 pc or less). Some of the clouds were also observed in J=2-1 12CO, and in the lower two transitions of 13CO. Clouds mapped with a twice higher angular resolution in J=2-1 12CO show substructure with dimensions once again comparable to those of the mapping beam. The few clouds for which we could model physical parameters have fairly warm (T(kin) = 60 - 150 K) and moderately dense (n(H2) = 3000 cm-3) gas. The northeastern chain of CO clouds, although lacking in diffuse intercloud emission, is characteristic of the more quiescent regions of the LMC and appears to have been subject to relatively little photo-processing. The clouds forming part of the southwestern shell or ring, however, are almost devoid of diffuse intercloud emission and also exhibit other characteristics of an extreme photon-dominated region (PDR).Comment: 14 pages; accepted for publication in A&

    SN 1987A's Circumstellar Envelope, II: Kinematics of the Three Rings and the Diffuse Nebula

    Full text link
    We present several different measurements of the velocities of structures within the circumstellar envelope of SN 1987A, including the inner, equatorial ring (ER), outer rings (ORs), and the diffuse nebulosity at radii < 5 pc, based on CTIO 4m and HST data. A comparison of STIS and WFPC2 [N II]6583 loci for the rings show that the ER is expanding in radius at 10.5+-0.3 km/s, with the northern OR expanding along the line of sight at about 26 km/s, and for the southern OR, about 23 km/s. Similar results are found with CTIO 4m data. Accounting for inclination, the best fit to all data show both ORs with an expansion from the SN of 26 km/s. The ratio of the ER to OR velocities is nearly equal to the ratio of ER to OR radii, so the rings are roughly homologous, all having kinematic ages corresponding to about 20,000 yr before the SN explosion. This makes previously reported, large compositional differences between the ER and ORs difficult to understand. Additionally, a grid of longslit 4m/echelle spectra centered on the SN shows two velocity components over a region roughly coextensive with the outer circumstellar envelope extending about 5 pc (20 arcsec) from the SN. One component is blueshifted and the other redshifted from the SN centroid by about 10 km/s each. These features may represent a bipolar flow expanding from the SN, in which the ORs are propelled 10-15 km/s faster than that of the surrounding envelope into which they propogate. The kinematic timescale for the entire nebula is at least about 350,000 yr. The kinematics of these various structures constrain possible models for the evolution of the progenitor and its formation of a mass loss nebula.Comment: 25 pages AASTeX text plus 12 figures. ApJ, in pres

    A Reanalysis of theUltraviolet Extinction from Interstellar Dust in the Large Magellanic Cloud

    Get PDF
    We have reanalyzed the Large Magellanic Cloud's (LMC) ultraviolet (UV) extinction using data from the IUE final archive. Our new analysis takes advantage of the improved signal--to--noise of the IUE NEWSIPS reduction, the exclusion of stars with very low reddening, the careful selection of well matched comparison stars, and an analysis of the effects of Galactic foreground dust. Differences between the average extinction curves of the 30 Dor region and the rest of the LMC are reduced compared to previous studies. We find that there is a group of stars with very weak 2175 Ang. bumps that lie in or near the region occupied by the supergiant shell, LMC 2, on the southeast side of 30 Dor. The average extinction curves inside and outside LMC 2 show a very significant difference in 2175 Ang. bump strength, but their far--UV extinctions are similar. While it is unclear whether or not the extinction outside the LMC 2 region can be fit with the relation of Cardelli, Clayton and Mathis (CCM), sightlines near LMC 2 cannot be fit with CCM due to their weak 2175 Ang. bumps. While the extinction properties seen in the LMC lie within the range of properties seen in the Galaxy, the correlations of UV extinction properties with environment seen in the Galaxy do not appear to hold in the LMC.Comment: 29 pages, 10 figures, to be published in Ap

    Supernova 1987A: Rotation and a Binary Companion

    Full text link
    In this paper we provide a possible link between the structure of the bipolar nebula surrounding SN1987A and the properties of its progenitor star. A Wind Blwon Bubble (WBB) scenario is emplyed, in which a fast, tenuous wind from a Blue Supergiant expands into a slow, dense wind, expelled during an earlier Red Supergiant phase. The bipolar shapre develops due to a pole-to-equator density contrast in the slow wind (ie, the slow wind forms a slow torus). We use the Wind Compressed Disk (WCD) model of Bjorkman & Cassinelli (1992) to determine the shape of the slow torus. In the WCD scenario, the shape of the torus is determined by the rotation of the progenitor star. We then use a self-similar semi-analytical method for wind blown bubble evolution to determine the shape of the resulting bipolar nebula. We find that the union of the wind-compressed-disk and bipolar-wind-blown- bubble models allows us to recover the salient properties of SN1987A's circumstellar nebula. In particular, the size, speed and density of SN1987A's inner ring are easily reproduced in our calculations. An exploration of parameter space shows the the red supergiant progenitor must be been rotating at > 0.3 of its breakup speed. We conclude that the progenitor was most likely spun up by a merger with a binary companion. Using a simple model for the binary merger we find that the companion is likely to have had a mass > 0.5 M_sun.Comment: 30 pages, 4 figure

    Photoevaporating flows from the cometary knots in the Helix nebula (NGC 7293)

    Get PDF
    We explain the Ha emission of the cometary knots in the Helix Nebula (NGC 7293) with an analytical model that describes the emission of the head of the globules as a photoevaporated flow produced by the incident ionizing radiation of the central star.We compare these models with the Ha emission obtained from the HST archival images of the Helix Nebula. From a comparison of the Ha emission with the predictions of the analytical model we obtain a rate of ionizing photons from the central star of about 5e45 s^-1, which is consistent with estimates based on the total Hb flux of the nebula. We also model the tails of the cometary knots as a photoevaporated wind from a neutral shadow region produced by the diffuse ionizing photon field of the nebula. A comparison with the HST images allows us to obtain a direct determination of the value of the diffuse ionizing flux. We compare the ratio of diffuse to direct stellar flux as a function of radius inside an HII region with those obtained from the observational data through the analytical tail and head wind model. The agreement of this model with the values determined from the observations of the knots is excellent.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Observational Study of the Multistructured Planetary Nebula NGC 7354

    Full text link
    We present an observational study of the planetary nebula (PN) NGC 7354 consisting of narrowband Halpha and [NII]6584 imaging as well as low- and high-dispersion long-slit spectroscopy and VLA-D radio continuum. According to our imaging and spectroscopic data, NGC 7354 has four main structures: a quite round outer shell and an elliptical inner shell, a collection of low-excitation bright knots roughly concentrated on the equatorial region of the nebula, and two symmetrical jet-like features, not aligned either with the shells' axes, or with each other. We have obtained physical parameters like electron temperature and electron density as well as ionic and elemental abundances for these different structures. Electron temperature and electron density slightly vary throughout the nebula. The local extinction coefficient c_Hbeta shows an increasing gradient from south to north and a decreasing gradient from east to west consistent with the number of equatorial bright knots present in each direction. Abundance values show slight internal variations but most of them are within the estimated uncertainties. In general, abundance values are in good agreement with the ones expected for PNe. Radio continuum data are consistent with optically thin thermal emission. We have used the interactive three-dimensional modeling tool SHAPE to reproduce the observed morphokinematic structures in NGC 7354 with different geometrical components. Our SHAPE model is in very good agreement with our imaging and spectroscopic observations. Finally, after modeling NGC 7354 with SHAPE, we suggest a possible scenario for the formation of the nebula.Comment: Accepted for publication in AJ, 12 pages, 8 figure
    • 

    corecore