117 research outputs found

    Functional Restoration of CFTR Nonsense Mutations in Intestinal Organoids

    Get PDF
    Background: Pharmacotherapies for people with cystic fibrosis (pwCF) who have premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are under development. Thus far, clinical studies focused on compounds that induce translational readthrough (RT) at the mRNA PTC location. Recent studies using primary airway cells showed that PTC functional restoration can be achieved through combining compounds with multiple mode-of-actions. Here, we assessed induction of CFTR function in PTC-containing intestinal organoids using compounds targeting RT, nonsense mRNA mediated decay (NMD) and CFTR protein modulation. Methods: Rescue of PTC CFTR protein was assessed by forskolin-induced swelling of 12 intestinal organoid cultures carrying distinct PTC mutations. Effects of compounds on mRNA CFTR level was assessed by RT-qPCRs. Results: Whilst response varied between donors, significant rescue of CFTR function was achieved for most donors with the quintuple combination of a commercially available pharmacological equivalent of the RT compound (ELX-02-disulfate or ELX-02ds), NMD inhibitor SMG1i, correctors VX-445 and VX-661 and potentiator VX-770. The quintuple combination of pharmacotherapies reached swelling quantities higher than the mean swelling of three VX-809/VX-770-rescued F508del/F508del organoid cultures, indicating level of rescue is of clinical relevance as VX-770/VX-809-mediated F508del/F508del rescue in organoids correlate with substantial improvement of clinical outcome. Conclusions: Whilst variation in efficacy was observed between genotypes as well as within genotypes, the data suggests that strong pharmacological rescue of PTC requires a combination of drugs that target RT, NMD and protein function

    Does familial risk for alcohol use disorder predict alcohol hangover?

    Get PDF
    Positive family history of alcohol use disorder (FHP), a variable associated with propensity for alcohol use disorder (AUD), has been linked with elevated hangover frequency and severity, after controlling for alcohol use. This implies that hangover experiences may be related to AUD. However, inadequate control of alcohol consumption levels, low alcohol dose and testing for hangover during the intoxication phase detract from these findings. Here, we present further data pertinent to understanding the relationship between family history and alcohol hangover. Study 1 compared past year hangover frequency in a survey of 24 FHP and 118 family history negative (FHN) individuals. Study 2 applied a quasi-experimental naturalistic approach assessing concurrent hangover severity in 17 FHP and 32 FHN individuals the morning after drinking alcohol. Both studies applied statistical control for alcohol consumption levels. In Study 1, both FHP status and estimated blood alcohol concentration on the heaviest drinking evening of the past month predicted the frequency of hangover symptoms experienced over the previous 12 months. In Study 2, estimated blood alcohol concentration the previous evening predicted hangover severity but FHP status did not. FHP, indicating familial risk for AUD, was not associated with concurrent hangover severity but was associated with increased estimates of hangover frequency the previous year

    Clinical effects of the three CFTR potentiator treatments curcumin, genistein and ivacaftor in patients with the CFTR-S1251N gating mutation

    Get PDF
    Contains fulltext : 229853.pdf (Publisher’s version ) (Closed access)BACKGROUND: The natural food supplements curcumin and genistein, and the drug ivacaftor were found effective as CFTR potentiators in the organoids of individuals carrying a S1251N gating mutation, possibly in a synergistic fashion. Based on these in vitro findings, we evaluated the clinical efficacy of a treatment with curcumin, genistein and ivacaftor, in different combinations. METHODS: In three multi-center trials people with CF carrying the S1251N mutation were treated for 8 weeks with curcumin+genistein, ivacaftor and ivacaftor+genistein. We evaluated change in lung function, sweat chloride concentration, CFQ-r, BMI and fecal elastase to determine the clinical effect. We evaluated the pharmacokinetic properties of the compounds by evaluating the concentration in plasma collected after treatment and the effect of the same plasma on the intestinal organoids. RESULTS: A clear clinical effect of treatment with ivacaftor was observed, evidenced by a significant improvement in clinical parameters. In contrast we observed no clear clinical effect of curcumin and/or genistein, except for a small but significant reduction in sweat chloride and airway resistance. Plasma concentrations of the food supplements were low, as was the response of the organoids to this plasma. CONCLUSIONS: We observed a clear clinical effect of treatment with ivacaftor, which is in line with the high responsiveness of the intestinal organoids to this drug. No clear clinical effect was observed of the treatment with curcumin and/or genistein, the low plasma concentration of these compounds emphasizes that pharmacokinetic properties of a compound have to be considered when in vitro experiments are performed

    Transformed canine and murine mesenchymal stem cells as a model for sarcoma with complex genomics

    Get PDF
    Simple SummarySarcomas are rare cancers of mesenchymal origin, the majority of which are characterized by many copy number alterations, amplifications, or deletions. Because of these complex genomics, it is notoriously difficult to identify driver events of malignant transformation. In this study, we show that murine and canine mesenchymal stem cells (MSCs) can be used to model spontaneous malignant transformation towards sarcomas with complex genomics. We show that these MSCs have an abnormal karyotype, many structural variants, and point mutations at whole genome sequencing analysis, and form sarcomas after injection into mice. Our cross-species analysis reveals that p53 loss is an early event in sarcomagenesis, and it was shown that MSCs with a knock-out in Trp53 transform earlier compared to wild-type MSCs. Our study points to the importance of p53 loss in the transformation process towards sarcomas with complex genomics.Sarcomas are rare mesenchymal tumors with a broad histological spectrum, but they can be divided into two groups based on molecular pathology: sarcomas with simple or complex genomics. Tumors with complex genomics can have aneuploidy and copy number gains and losses, which hampers the detection of early, initiating events in tumorigenesis. Often, no benign precursors are known, which is why good models are essential. The mesenchymal stem cell (MSC) is the presumed cell of origin of sarcoma. In this study, MSCs of murine and canine origin are used as a model to identify driver events for sarcomas with complex genomic alterations as they transform spontaneously after long-term culture. All transformed murine but not canine MSCs formed sarcomas after subcutaneous injection in mice. Using whole genome sequencing, spontaneously transformed murine and canine MSCs displayed a complex karyotype with aneuploidy, point mutations, structural variants, inter-chromosomal translocations, and copy number gains and losses. Cross-species analysis revealed that point mutations in Tp53/Trp53 are common in transformed murine and canine MSCs. Murine MSCs with a cre-recombinase induced deletion of exon 2-10 of Trp53 transformed earlier compared to wild-type murine MSCs, confirming the contribution of loss of p53 to spontaneous transformation. Our comparative approach using transformed murine and canine MSCs points to a crucial role for p53 loss in the formation of sarcomas with complex genomics.Molecular tumour pathology - and tumour geneticsMTG

    Sensitivity to Experiencing Alcohol Hangovers: Reconsideration of the 0.11% Blood Alcohol Concentration (BAC) Threshold for Having a Hangover

    Get PDF
    The 2010 Alcohol Hangover Research Group consensus paper defined a cutoff blood alcohol concentration (BAC) of 0.11% as a toxicological threshold indicating that sufficient alcohol had been consumed to develop a hangover. The cutoff was based on previous research and applied mostly in studies comprising student samples. Previously, we showed that sensitivity to hangovers depends on (estimated) BAC during acute intoxication, with a greater percentage of drinkers reporting hangovers at higher BAC levels. However, a substantial number of participants also reported hangovers at comparatively lower BAC levels. This calls the suitability of the 0.11% threshold into question. Recent research has shown that subjective intoxication, i.e., the level of severity of reported drunkenness, and not BAC, is the most important determinant of hangover severity. Non-student samples often have a much lower alcohol intake compared to student samples, and overall BACs often remain below 0.11%. Despite these lower BACs, many non-student participants report having a hangover, especially when their subjective intoxication levels are high. This may be the case when alcohol consumption on the drinking occasion that results in a hangover significantly exceeds their “normal” drinking level, irrespective of whether they meet the 0.11% threshold in any of these conditions. Whereas consumers may have relative tolerance to the adverse effects at their “regular” drinking level, considerably higher alcohol intake—irrespective of the absolute amount—may consequentially result in a next-day hangover. Taken together, these findings suggest that the 0.11% threshold value as a criterion for having a hangover should be abandoned

    Forskolin-induced Organoid Swelling is Associated with Long-term CF Disease Progression

    Get PDF
    RATIONALE: Cystic fibrosis (CF) is a monogenic life-shortening disease associated with highly variable individual disease progression which is difficult to predict. Here we assessed the association of forskolin-induced swelling (FIS) of patient-derived organoids (PDO) with long-term CF disease progression in multiple organs and compared FIS with the golden standard biomarker sweat chloride concentration (SCC). METHODS: We retrieved 9-year longitudinal clinical data from the Dutch CF Registry of 173 people with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Individual CFTR function was defined by FIS, measured as the relative size increase of intestinal organoids after stimulation with 0.8 µM forskolin, quantified as area under the curve (AUC). We used linear mixed effect models and multivariable logistic regression to estimate the association of FIS with long-term FEV1pp decline and development of pancreatic insufficiency, CF-related liver disease and diabetes. Within these models, FIS was compared with SCC. RESULTS: FIS was strongly associated with longitudinal changes of lung function, with an estimated difference in annual FEV1pp decline of 0.32% (95%CI: 0.11%-0.54%; p=0.004) per 1000-points change in AUC. Moreover, increasing FIS levels were associated with lower odds of developing pancreatic insufficiency (adjusted OR: 0.18, 95%CI: 0.07-0.46, p<0.001), CF-related liver disease (adjusted OR: 0.18, 95%CI: 0.06-0.54, p=0.002) and diabetes (adjusted OR: 0.34, 95%CI: 0.12-0.97, p=0.044). These associations were absent for SCC. CONCLUSION: This study exemplifies the prognostic value of a PDO-based biomarker within a clinical setting, which is especially important for people carrying rare CFTR mutations with unclear clinical consequences

    Exploring intrinsic variability between cultured nasal and bronchial epithelia in cystic fibrosis

    Get PDF
    The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored whether intrinsic differences between nasal and bronchial epithelial cells persist in cell cultures and affect epithelial cell functioning in CF. Comparison of air-liquid interface (ALI) differentiated epithelial cells from subjects with CF revealed distinct mucociliary differentiation states of nasal and bronchial cultures. Moreover, using RNA sequencing we identified cell type-specific signature transcription factors in differentiated nasal and bronchial epithelial cells, some of which were already poised for expression in basal progenitor cells as evidenced by ATAC sequencing. Analysis of differentiated nasal and bronchial epithelial 3D organoids revealed distinct capacities for fluid secretion, which was linked to differences in ciliated cell differentiation. In conclusion, we show that unique phenotypical and functional features of nasal and bronchial epithelial cells persist in cell culture models, which can be further used to investigate the effects of tissue-specific features on upper and lower respiratory disease development in CF

    FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA

    Get PDF
    We have previously reported that DT40 cells deficient in the Y-family polymerase REV1 are defective in replicating G-quadruplex DNA. In vivo this leads to uncoupling of DNA synthesis from redeposition of histones displaced ahead of the replication fork, which in turn leads to loss of transcriptional repression due to failure to recycle pre-existing repressive histone post-translational modifications. Here we report that a similar process can also affect transcriptionally active genes, leading to their deactivation. We use this finding to develop an assay based on loss of expression of a cell surface marker to monitor epigenetic instability at the level of single cells. This assay allows us to demonstrate G4 DNA motif-associated epigenetic instability in mutants of three helicases previously implicated in the unwinding of G-quadruplex structures, FANCJ, WRN and BLM. Transcriptional profiling of DT40 mutants reveals that FANCJ coordinates two independent mechanisms to maintain epigenetic stability near G4 DNA motifs that are dependent on either REV1 or on the WRN and BLM helicases, suggesting a model in which efficient in vivo replication of G-quadruplexes often requires the established 5′–3′-helicase activity of FANCJ acting in concert with either a specialized polymerase or helicase operating in the opposite polarity

    G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae

    Get PDF
    G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint
    corecore