36 research outputs found

    Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry

    Get PDF
    The RNase E family is renowned for being central to the processing and decay of all types of RNA in many species of bacteria, as well as providing the first examples of endonucleases that can recognize 50 -monophosphorylated ends thereby increasing the efficiency of cleavage. However, there is increasing evidence that some transcripts can be cleaved efficiently by Escherichia coli RNase E via direct entry, i.e. in the absence of the recognition of a 50 -monophosphorylated end. Here, we provide biochemical evidence that direct entry is central to the processing of transfer RNA (tRNA) in E. coli, one of the core functions of RNase E, and show that it is mediated by specific unpaired regions that are adjacent, but not contiguous to segments cleaved by RNase E. In addition, we find that direct entry at a site on the 50 side of a tRNA precursor triggers a series of 50 -monophosphate-dependent cleavages. Consistent with a major role for direct entry in tRNA processing, we provide additional evidence that a 50 -monophosphate is not required to activate the catalysis step in cleavage. Other examples of tRNA precursors processed via direct entry are also provided. Thus, it appears increasingly that direct entry by RNase E has a major role in bacterial RNA metabolism

    Spatiotemporal analysis of axonal autophagosome–lysosome dynamics reveals limited fusion events and slow maturation

    No full text
    Macroautophagy is a homeostatic process required to clear cellular waste. Neuronal autophagosomes form constitutively in the distal tip of the axon and are actively transported toward the soma, with cargo degradation initiated en route. Cargo turnover requires autophagosomes to fuse with lysosomes to acquire degradative enzymes; however, directly imaging these fusion events in the axon is impractical. Here we use a quantitative model, parameterized and validated using data from primary hippocampal neurons, to explore the autophagosome maturation process. We demonstrate that retrograde autophagosome motility is independent of fusion and that most autophagosomes fuse with only a few lysosomes during axonal transport. Our results indicate that breakdown of the inner autophagosomal membrane is much slower in neurons than in nonneuronal cell types, highlighting the importance of this late maturation step. Together, rigorous quantitative measurements and mathematical modeling elucidate the dynamics of autophagosome-lysosome interaction and autophagosomal maturation in the axon

    Tension-dependent structural deformation alters single-molecule transition kinetics

    No full text
    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension
    corecore