18 research outputs found

    The putative Tumor Suppressor VILIP-1 Counteracts Epidermal Growth Factor-Induced Epidermal-Mesenchymal Transition in Squamous Carcinoma Cells

    Get PDF
    Epithelial-mesenchymal transition (EMT) is a crucial step for the acquisition of invasive properties of carcinoma cells during tumor progression. Epidermal growth factor (EGF)-treatment of squamous cell carcinoma (SCC) cells provokes changes in the expression of lineage markers, morphological changes, and a higher invasive and metastatic potential. Here we show that chronic stimulation with EGF induces EMT in skin-derived SCC cell lines along with the down-regulation of the epithelial marker E-cadherin, and of the putative tumor suppressor VILIP-1 (visinin-like protein 1). In esophageal squamous cell carcinoma and non-small cell lung carcinoma the loss of VILIP-1 correlates with clinicopathological features related to enhanced invasiveness. VILIP-1 has previously been shown to suppress tumor cell invasion via enhancing cAMP-signaling in a murine SCC model. In mouse skin SCC cell lines the VILIP-1-negative tumor cells have low cAMP levels, whereas VILIP-1-positive SCCs possess high cAMP levels, but low invasive properties. We show that in VILIP-1-negative SCCs, Snail1, a transcriptional repressor involved in EMT, is up-regulated. Snail1 expression is reduced by ectopic VILIP-1-expression in VILIP-1-negative SCC cells, and application of the general adenylyl cyclase inhibitor 2′,3′-dideoxyadenosine attenuated this effect. Conversely, EGF-stimulation of VILIP-1-positive SCC cells leads to the down-regulation of VILIP-1 and the induction of Snail1 expression. The induction of Snail is inhibited by elevated cAMP levels. The role of cAMP in EMT was further highlighted by its suppressive effect on the EGF-induced enhancement of migration in VILIP-1-positive SCC cells. These findings indicate that VILIP-1 is involved in EMT of SCC by regulating the transcription factor Snail1 in a cAMP-dependent manner

    In Vivo Evolution of Tumor-Derived Endothelial Cells

    Get PDF
    The growth of a malignant tumor beyond a certain, limited size requires that it first develop an independent blood supply. In addition to providing metabolic support, this neovasculature also allows tumor cells to access the systemic circulation, thus facilitating metastatic dissemination. The neovasculature may originate either from normal blood vessels in close physical proximity to the tumor and/or from the recruitment of bone marrow-derived endothelial cell (EC) precursors. Recent studies have shown that human tumor vasculature ECs may also arise directly from tumor cells themselves and that the two populations have highly similar or identical karyotypes. We now show that, during the course of serial in vivo passage, these tumor-derived ECs (TDECs) progressively acquire more pronounced EC-like properties. These include higher-level expression of EC-specific genes and proteins, a greater capacity for EC-like behavior in vitro, and a markedly enhanced propensity to incorporate into the tumor vasculature. In addition, both vessel density and size are significantly increased in neoplasms derived from mixtures of tumor cells and serially passaged TDECs. A comparison of early- and late-passage TDECs using whole-genome single nucleotide polymorphism profiling showed the latter cells to have apparently evolved by a process of clonal expansion of a population with a distinct pattern of interstitial chromosomal gains and losses affecting a relatively small number of genes. The majority of these have established roles in vascular development, tumor suppression or epithelial-mesenchymal transition. These studies provide direct evidence that TDECs have a strong evolutionary capacity as a result of their inherent genomic instability. Consequently such cells might be capable of escaping anti-angiogenic cancer therapies by generating resistant populations

    IL-10R Blockade during Chronic Schistosomiasis Mansoni Results in the Loss of B Cells from the Liver and the Development of Severe Pulmonary Disease

    Get PDF
    In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection

    Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension

    No full text
    Alterations of the nitric oxide receptor, soluble guanylate cyclase (sGC) may contribute to the pathophysiology of pulmonary arterial hypertension (PAH). In the present study, the expression of sGC in explanted lung tissue of PAH patients was studied and the effects of the sGC stimulator BAY 63-2521 on enzyme activity, and haemodynamics and vascular remodelling were investigated in two independent animal models of PAH. Strong upregulation of sGC in pulmonary arterial vessels in the idiopathic PAH lungs compared with healthy donor lungs was demonstrated by immunohistochemistry. Upregulation of sGC was detected, similarly to humans, in the structurally remodelled smooth muscle layer in chronic hypoxic mouse lungs and lungs from monocrotaline (MCT)-injected rats. BAY 63-2521 is a novel, orally available compound that directly stimulates sGC and sensitises it to its physiological stimulator, nitric oxide. Chronic treatment of hypoxic mice and MCT-injected rats, with fully established PAH, with BAY 63-2521 (10 mg x kg(-1) x day(-1)) partially reversed the PAH, the right heart hypertrophy and the structural remodelling of the lung vasculature. Upregulation of soluble guanylate cyclase in pulmonary arterial smooth muscle cells was noted in human idiopathic pulmonary arterial hypertension lungs and lungs from animal models of pulmonary arterial hypertension. Stimulation of soluble guanylate cyclase reversed right heart hypertrophy and structural lung vascular remodelling. Soluble guanylate cyclase may thus offer a new target for therapeutic intervention in pulmonary arterial hypertension

    Schistosomiasis differentially affects vasoconstrictor responses: up-regulation of 5-HT receptor-mediated aorta contraction

    No full text
    Schistosomiasis, classified by the World Health Organization as a neglected tropical disease, is an intravascular parasitic disease associated to a chronic inflammatory state. Evidence implicating inflammation in vascular dysfunction continues to mount, which, broadly defined, reflects a failure in the control of intracellular Ca2+ and consequently, vascular contraction. Therefore, we measured aorta contraction induced by 5-hydroxytryptamine (5-HT) and endothelin-1 (ET-1), two important regulators of vascular contraction. Isometric aortic contractions were determined in control and Schistosoma mansoni-infected mice. In the infected animals, 5-HT induced a 50% higher contraction in relation to controls and we also observed an increased contraction in response to Ca2+ mobilisation from sarcoplasmic reticulum. Nevertheless, Rho kinase inhibition reduced the contraction in response to 5-HT equally in both groups, discarding an increase of the contractile machinery sensitivity to Ca2+. Furthermore, no alteration was observed for contractions induced by ET-1 in both groups. Our data suggest that an immune-vascular interaction occurs in schistosomiasis, altering vascular contraction outside the mesenteric portal system. More importantly, it affects distinct intracellular signalling involved in aorta contraction, in this case increasing 5-HT receptor signalling

    Expression and Activity of Phosphodiesterase Isoforms during Epithelial Mesenchymal Transition: The Role of Phosphodiesterase 4

    No full text
    Epithelial–mesenchymal transition (EMT) has emerged as a critical event in the pathogenesis of organ fibrosis and cancer and is typically induced by the multifunctional cytokine transforming growth factor (TGF)-β1. The present study was undertaken to evaluate the potential role of phosphodiesterases (PDEs) in TGF-β1-induced EMT in the human alveolar epithelial type II cell line A549. Stimulation of A549 with TGF-β1 induced EMT by morphological alterations and by expression changes of the epithelial phenotype markers E-cadherin, cytokeratin-18, zona occludens-1, and the mesenchymal phenotype markers, collagen I, fibronectin, and α-smooth muscle actin. Interestingly, TGF-β1 stimulation caused twofold increase in total cAMP-PDE activity, contributed mostly by PDE4. Furthermore, mRNA and protein expression demonstrated up-regulation of PDE4A and PDE4D isoforms in TGF-β1-stimulated cells. Most importantly, treatment of TGF-β1 stimulated epithelial cells with the PDE4-selective inhibitor rolipram or PDE4 small interfering RNA potently inhibited EMT changes in a Smad-independent manner by decreasing reactive oxygen species, p38, and extracellular signal-regulated kinase phosphorylation. In contrast, the ectopic overexpression of PDE4A and/or PDE4D resulted in a significant loss of epithelial marker E-cadherin but did not result in changes of mesenchymal markers. In addition, Rho kinase signaling activated by TGF-β1 during EMT demonstrated to be a positive regulator of PDE4. Collectively, the findings presented herein suggest that TGF-β1 mediated up-regulation of PDE4 promotes EMT in alveolar epithelial cells. Thus, targeting PDE4 isoforms may be a novel approach to attenuate EMT-associated lung diseases such as pulmonary fibrosis and lung cancer
    corecore