2,483 research outputs found

    Photon and electron spectra in hot and dense QED

    Get PDF
    Photon and electron spectra in hot and dense QED are found in the high temperature limit for all |\q| using the Feynman gauge and the one-loop self-energy. All spectra are split by the medium and their branches develop the gap (the dynamical mass) at zero momentum. The photon spectrum has two branches (longitudinal and transverse) with the common mass; but electron spectrum is split on four branches which are well-separated for any |\q| including their |\q|=0 limits (their effective masses). These masses and the photon thermal mass are calculated explicitly and the different limits of spectrum branches are established in detail. The gauge invariance of the high-temperature spectra is briefly discussed.Comment: 9 pages, latex, no figure

    Quadrupole transitions near interface: general theory and application to atom inside a planar cavity

    Full text link
    Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of Green function of Maxwell equations. The equivalence of both approaches is shown. General expressions are applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary dielectric constant. It is shown that in the case when the atom is close to the surface, the total decay rate is inversely proportional to the fifth power of distance between an atom and a plane interface.Comment: 18 pages, 7 figure

    Field quantization and squeezed states generation in resonators with time-dependent parameters

    Get PDF
    The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources

    Rethinking the Properties of the Quark-Gluon Plasma at TTcT\sim T_c

    Full text link
    We argue that although at asymptotically high temperatures the QGP in bulk behaves as a gas of weakly interacting quasiparticles (modulo long-range magnetism), at temperatures up to few times the critical temperature TcT_c it displays different properties. If the running of the QCD coupling constant continues in the Coulomb phase till the screening length scale, it reaches the strong coupling treshold αs(mD)1\alpha_s(m_D)\sim 1. As a result, the Coulomb phase supports weakly bound Coulombic s-wave cˉc\bar c c, light quark and even gggg states. The existence of shallow bound states dramatically increases the quasiparticle rescattering at low energies, reducing the viscosity and thereby explaining why heavy ion collisions at RHIC exhibit robust collective phenomena. In conformal gauge theories at finite temperature the Coulomb binding persists further in the strong coupling regime, as found for N=4{\cal N}=4 SUSY YM in the Maldacena regime.Comment: v2 version have one more figure and one more reference, v3 is the same as v2 except a double-page format (the v2 had corrupted last lines on the page

    Different regimes of Forster energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals

    Full text link
    We calculate the rate of non-radiative, Forster-type energy transfer (ET) from an excited epitaxial quantum well (QW) to a proximal monolayer of semiconductor nanocrystal quantum dots (QDs). Different electron-hole configurations in the QW are considered as a function of temperature and excited electron-hole density. A comparison of the theoretically determined ET rate and QW radiative recombination rate shows that, depending on the specific conditions, the ET rate is comparable to or even greater than the radiative recombination rate. Such efficient Forster ET is promising for the implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure

    Comprehensive theory of the relative phase in atom-field interactions

    Full text link
    We explore the role played by the quantum relative phase in a well-known model of atom-field interaction, namely, the Dicke model. We introduce an appropriate polar decomposition of the atom-field relative amplitudes that leads to a truly Hermitian relative-phase operator, whose eigenstates correctly describe the phase properties, as we demonstrate by studying the positive operator-valued measure derived from it. We find the probability distribution for this relative phase and, by resorting to a numerical procedure, we study its time evolution.Comment: 20 pages, 4 figures, submitted to Phys. Rev.

    Probing the Mechanisms of Fibril Formation Using Lattice Models

    Full text link
    Using exhaustive Monte Carlo simulations we study the kinetics and mechanism of fibril formation using lattice models as a function of temperature and the number of chains. While these models are, at best, caricatures of peptides, we show that a number of generic features thought to govern fibril assembly are present in the toy model. The monomer, which contains eight beads made from three letters (hydrophobic, polar, and charged), adopts a compact conformation in the native state. The kinetics of fibril assembly occurs in three distinct stages. In each stage there is a cascade of events that transforms the monomers and oligomers to ordered structures. In the first "burst" stage highly mobile oligomers of varying sizes form. The conversion to the aggregation-prone conformation occurs within the oligomers during the second stage. As time progresses, a dominant cluster emerges that contains a majority of the chains. In the final stage, the aggregation-prone conformation particles serve as a template onto which smaller oligomers or monomers can dock and undergo conversion to fibril structures. The overall time for growth in the latter stages is well described by the Lifshitz-Slyazov growth kinetics for crystallization from super-saturated solutions.Comment: 27 pages, 6 figure

    One-particle and collective electron spectra in hot and dense QED and their gauge dependence

    Get PDF
    The one-particle electron spectrum is found for hot and dense QED and its properties are investigated in comparison with the collective spectrum. It is shown that the one-particle spectrum (in any case its zero momentum limit) is gauge invariant, but the collective spectrum, being qualitatively different, is always gauge dependent. The exception is the case m,μ=0m,\mu=0 for which the collective spectrum long wavelength limit demonstrates the gauge invariance as well.Comment: 9 pages, latex, no figure

    Infrared Behavior of High-Temperature QCD

    Full text link
    The damping rate \gamma_t(p) of on-shell transverse gluons with ultrasoft momentum p is calculated in the context of next-to-leading-order hard-thermal-loop-summed perturbation of high-temperature QCD. It is obtained in an expansion to second order in p. The first coefficient is recovered but that of order p^2 is found divergent in the infrared. Divergences from light-like momenta do also occur but are circumvented. Our result and method are critically discussed, particularly regarding a Ward identity obtained in the literature. When enforcing the equality between \gamma_t(0) and \gamma_l(0), a rough estimate of the magnetic mass is obtained. Carrying a similar calculation in the context of scalar quantum electrodynamics shows that the early ultrasoft-momentum expansion we make has little to do with the infrared sensitivity of the result.Comment: REVTEX4, 55 page
    corecore