308 research outputs found

    Lamellar corneal injury by bamboo splinters: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report an unusual case of corneal lamellar injury caused by long bamboo splinters.</p> <p>Case presentation</p> <p>A 70-year-old Japanese man visited our hospital with a bamboo injury. Slit lamp examination revealed that a bundle of bamboo splinters had deeply penetrated the corneal stroma of the right eye from the nasal limbus. The splinters were approximately 8 mm in length, but had not perforated the anterior chamber. They were completely removed by superficial corneal incision alongside each splinter with no consequences. The eye has remained healed for 3 months postoperatively.</p> <p>Conclusion</p> <p>The bamboo splinters did not perforate the anterior chamber, although they were long and hard enough to do so. This may be because the spatula-like shape and flexibility of the bamboo splinters allowed them to penetrate the lamellar layer of the corneal stroma with ease, but with no perforation of deeper tissue.</p

    Survey sequencing and radiation hybrid mapping to construct comparative maps.

    No full text
    In MURPHY WJ (ed.) Phylogenomics, Humana Press. (Methods in Molecular Biology, 422)International audienceRadiation hybrid (RH) mapping has become one of the most well-established techniques for economically and efficiently navigating genomes of interest. The success of the technique relies on random chromosome breakage of a target genome, which is then captured by recipient cells missing a preselected marker. Selection for hybrid cells that have DNA fragments bearing the marker of choice, plus a random set of DNA fragments from the initial irradiation, generates a set of cell lines that recapitulates the genome of the target organism several-fold. Markers or genes of interest are analyzed by PCR using DNA isolated from each cell line. Statistical tools are applied to determine both the linear order of markers on each chromosome, and the confidence of each placement. The resolution of the resulting map relies on many factors, most notably the degree of breakage from the initial radiation as well as the number of hybrid clones and mean retention value.A high-resolution RH map of a genome derived from low pass or survey sequencing (coverage from 1 to 2 times) can provide essentially the same comparative data on gene order that is derived from high-coverage (greater than x7) genome sequencing. When combined with fluorescence in situ hybridization, RH maps are complete and ordered blueprints for each chromosome. They give information about the relative order and spacing of genes and markers, and allow investigators to move between target and reference genomes, such as those of mouse or human, with ease although the approach is not limited to mammal genomes

    Array-Based Whole-Genome Survey of Dog Saliva DNA Yields High Quality SNP Data

    Get PDF
    Background: Genome-wide association scans for genetic loci underlying both Mendelian and complex traits are increasingly common in canine genetics research. However, the demand for high-quality DNA for use on such platforms creates challenges for traditional blood sample ascertainment. Though the use of saliva as a means of collecting DNA is common in human studies, alternate means of DNA collection for canine research have instead been limited to buccal swabs, from which dog DNA is of insufficient quality and yield for use on most high-throughput array-based systems. We thus investigated an animal-based saliva collection method for ease of use and quality of DNA obtained and tested the performance of saliva-extracted canine DNA on genome-wide genotyping arrays. Methodology/Principal Findings: Overall, we found that saliva sample collection using this method was efficient. Extractions yielded high concentrations (,125 ng/ul) of high-quality DNA that performed equally well as blood-extracted DNA on the Illumina Infinium canine genotyping platform, with average call rates.99%. Concordance rates between genotype calls of saliva- versus blood-extracted DNA samples from the same individual were also.99%. Additionally, in silico calling of copy number variants was successfully performed and verified by PCR. Conclusions/Significance: Our findings validate the use of saliva-obtained samples for genome-wide association studies i

    Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA

    Get PDF
    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog–wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14 437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13–24 wolf founders, but there was no indication of post-domestication dog–wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog–wolf hybridisation contributed modestly to the dog gene pool

    Positional clustering improves computational binding site detection and identifies novel cis-regulatory sites in mammalian GABA(A) receptor subunit genes

    Get PDF
    Understanding transcription factor (TF) mediated control of gene expression remains a major challenge at the interface of computational and experimental biology. Computational techniques predicting TF-binding site specificity are frequently unreliable. On the other hand, comprehensive experimental validation is difficult and time consuming. We introduce a simple strategy that dramatically improves robustness and accuracy of computational binding site prediction. First, we evaluate the rate of recurrence of computational TFBS predictions by commonly used sampling procedures. We find that the vast majority of results are biologically meaningless. However clustering results based on nucleotide position improves predictive power. Additionally, we find that positional clustering increases robustness to long or imperfectly selected input sequences. Positional clustering can also be used as a mechanism to integrate results from multiple sampling approaches for improvements in accuracy over each one alone. Finally, we predict and validate regulatory sequences partially responsible for transcriptional control of the mammalian type A γ-aminobutyric acid receptor (GABA(A)R) subunit genes. Positional clustering is useful for improving computational binding site predictions, with potential application to improving our understanding of mammalian gene expression. In particular, predicted regulatory mechanisms in the mammalian GABA(A)R subunit gene family may open new avenues of research towards understanding this pharmacologically important neurotransmitter receptor system
    • …
    corecore