569 research outputs found

    Chaucer\u27s Literary Road from Romance to Reality

    Get PDF

    Harvesting and Preparing Drosophila Embryos for Electrophysiological Recording and Other Procedures

    Get PDF
    Drosophila is a premier genetic model for the study of both embryonic development and functional neuroscience. Traditionally, these fields are quite isolated from each other, with largely independent histories and scientific communities. However, the interface between these usually disparate fields is the developmental programs underlying acquisition of functional electrical signaling properties and differentiation of functional chemical synapses during the final phases of neural circuit formation. This interface is a critically important area for investigation. In Drosophila, these phases of functional development occur during a period of <8 hours (at 25°C) during the last third of embryogenesis. This late developmental period was long considered intractable to investigation owing to the deposition of a tough, impermeable epidermal cuticle. A breakthrough advance was the application of water-polymerizing surgical glue that can be locally applied to the cuticle to enable controlled dissection of late-stage embryos. With a dorsal longitudinal incision, the embryo can be laid flat, exposing the ventral nerve cord and body wall musculature to experimental investigation. This system has been heavily used to isolate and characterize genetic mutants that impair embryonic synapse formation, and thus reveal the molecular mechanisms governing the specification and differentiation of synapse connections and functional synaptic signaling properties

    Electrophysiological Recording in the Drosophila Embryo

    Get PDF
    Drosophila is a premier genetic model for the study of both embryonic development and functional neuroscience. Traditionally, these fields are quite isolated from each other, with largely independent histories and scientific communities. However, the interface between these usually disparate fields is the developmental programs underlying acquisition of functional electrical signaling properties and differentiation of functional chemical synapses during the final phases of neural circuit formation. This interface is a critically important area for investigation. In Drosophila, these phases of functional development occur during a period of <8 hours (at 25°C) during the last third of embryogenesis. This late developmental period was long considered intractable to investigation owing to the deposition of a tough, impermeable epidermal cuticle. A breakthrough advance was the application of water-polymerizing surgical glue that can be locally applied to the cuticle to enable controlled dissection of late-stage embryos. With a dorsal longitudinal incision, the embryo can be laid flat, exposing the ventral nerve cord and body wall musculature to experimental investigation. Whole-cell patch-clamp techniques can then be employed to record from individually-identifiable neurons and somatic muscles. These recording configurations have been used to track the appearance and maturation of ionic currents and action potential propagation in both neurons and muscles. Genetic mutants affecting these electrical properties have been characterized to reveal the molecular composition of ion channels and associated signaling complexes, and to begin exploration of the molecular mechanisms of functional differentiation. A particular focus has been the assembly of synaptic connections, both in the central nervous system and periphery. The glutamatergic neuromuscular junction (NMJ) is most accessible to a combination of optical imaging and electrophysiological recording. A glass suction electrode is used to stimulate the peripheral nerve, with excitatory junction current (EJC) recordings made in the voltage-clamped muscle. This recording configuration has been used to chart the functional differentiation of the synapse, and track the appearance and maturation of presynaptic glutamate release properties. In addition, postsynaptic properties can be assayed independently via iontophoretic or pressure application of glutamate directly to the muscle surface, to measure the appearance and maturation of the glutamate receptor fields. Thus, both pre- and postsynaptic elements can be monitored separately or in combination during embryonic synaptogenesis. This system has been heavily used to isolate and characterize genetic mutants that impair embryonic synapse formation, and thus reveal the molecular mechanisms governing the specification and differentiation of synapse connections and functional synaptic signaling properties

    Robust retention and transfer of tool construction techniques in chimpanzees (Pan troglodytes)

    Get PDF
    Long-term memory can be critical to a species’ survival in environments with seasonal and even longer-term cycles of resource availability. The present, longitudinal study investigated whether complex tool behaviors used to gain an out-of-reach reward, following a hiatus of about 3 years and 7 months since initial experiences with a tool use task, were retained and subsequently executed more quickly by experienced than by naïve chimpanzees. Ten of the 11 retested chimpanzees displayed impressive long-term procedural memory, creating elongated tools using the same methods employed years previously, either combining 2 tools or extending a single tool. The complex tool behaviors were also transferred to a different task context, showing behavioral flexibility. This represents some of the first evidence for appreciable long-term procedural memory, and improvements in the utility of complex tool manufacture in chimpanzees. Such long-term procedural memory and behavioral flexibility have important implications for the longevity and transmission of behavioral traditions

    Chimpanzees demonstrate individual differences in social information use

    Get PDF
    Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant’s performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score—‘SIS’). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15–24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning

    Young peoples’ reflections on what teachers think about family obligations that conflict with school: A focus on the non-normative roles of young caring and language brokering

    Get PDF
    In “Western” contexts school attendance is central for an ‘ideal’ childhood. However, many young people engage with home roles that conflict with school expectations. This paper explores perceptions of that process in relation two home activities - language brokering and young caring. We interviewed 46 young people and asked them to reflect on what the teacher would think when a child had to miss school to help a family member. This paper discusses the young people’s overall need to keep their out-of-school lives private from their teachers

    Literature

    Get PDF
    Literature has been proposed as a means to enrich an understanding of ethical issues within medicine and health care and as a resource in medical education. Its proponents argue for the value of understanding human suffering, and the experience of health care, through literature, rather than solely through the more abstract and analytic philosophical methods of bioethics. Literature is claimed to serve as a corrective to the rational and individualist approaches of bioethics, by drawing attention to ‘our vulnerable and interdependent human existence.’ In this essay the history of a relationship between ethics and literature is discussed, along with more recent scholarship on the ethical relevance of literature, and research focusing on the constitution of ethics as literary form. It is apparent that literature, and especially futurist writing and science fiction, has an influence on the construction and understanding of ethical issues for both specialist practitioners and the lay public. It is concluded that literature enhances understanding of ethical issues in health care and research, and the manner in which it does so needs to be better understood through the skills of literary analysis as a necessary complement to bioethical analysis
    corecore